
Using Exceptions in C++
a practical guide
18 April 2018

Zbigniew Skowron 1

Agenda
1. Introduction
2. Exception Basics
3. Motivation
4. Exception Safety
5. Technicalities
6. What to throw and when to catch
7. Exception propagation
8. Adding information to exceptions
9. Thread interruption

10. More technicalities

2

Introduction

3

What is the most important feature of C++?
One that enables us to write correct code:

● Destructors

They enable us to enforce invariants:
● Automatically
● Deterministically

○ at well specified time
○ in well specified order

C, C#, Java, Python, Ruby, Scala, Go, TypeScript etc. – they don’t have this!
(Rust has.)

4

RAII - Resource Acquisition Is Initialization

Examples:

● unique_ptr (memory),
● fstream (file handle),
● mutex (critical section),
● thread (operating system thread)
● etc.

void main()
{
 FILE* f = fopen("ala.txt");

 ...

 fclose(f)
}

void main()
{
 fstream file("ala.txt");

 ...

}

Evil

Leaks in case of:
● return,
● throw,
● break,
● continue,
● goto...

100% safe!

● create "handle" objects for all resources,
● those objects will release resources in destructors.

5

Use RAII religiously, everywhere*
RAII is the only* way to write correct code.

It’s also critical for writing exception-safe code.

C++ Core
Guidelines

E.6

6

Destructors are performing operations on one object at a time.
If you have many objects this is slow.

● Use resource pools.
● Do cleanup once per frame.
● Use data oriented design.

CppCon 2014: Mike Acton "Data-Oriented Design and C++"

Why some game programmers hate RAII?

7

https://www.youtube.com/watch?v=rX0ItVEVjHc

Exception Basics

8

What are exceptions?
Exceptions are like a return:

return 30;
throw 30;

They are:
● more expressive than traditional ints,
● impossible to ignore,
● systematic.

They both are meant to inform about the result of the function call.

Return reports value of a successful invocation.

Exceptions report failures during invocation.

9

Return Return exits to the calling point.

10

Throw Throw exits to nearest enclosing catch.

11

Nearest catch
Exception is caught be the nearest matching enclosing catch.
So order of catches is important.

void catching()
{
 try
 {
 throw std::runtime_error("Ooops.");
 }
 catch (...)
 {
 cout << "Something else.";
 }
 catch (const std::exception&)
 {
 cout << "std::exception";
 }
 catch (const std::runtime_error&)
 {
 cout << "std::runtime_error";
 }
}

void catching()
{
 try
 {
 throw std::runtime_error("Ooops.");
 }
 catch (const std::exception&)
 {
 cout << "std::exception";
 }
 catch (const std::runtime_error&)
 {
 cout << "std::runtime_error";
 }
}

C++ Core
Guidelines

E.31

12

Exceptions are very flexible
● Return has a fixed type of argument. ● Throw can throw anything.

13

Motivation

14

C code exampleint doStuff0()
{
 char* buffer0 = (char*)malloc(100);
 if (!buffer0)
 return -1;

 FILE* f = fopen("file.txt", "rb");
 if (!f)
 {
 free(buffer0);
 return -2;
 }

 fread(buffer0, 100, 1, f);

 char* buffer1 = (char*)malloc(100);
 if (!buffer1)
 {
 free(buffer0);
 fclose(f);
 return -1;
 }

 free(buffer0);
 free(buffer1);
 fclose(f);

 return 0;
}

Maintenance nightmare:
● Application logic is completely obscured.
● Lots of duplicated code.
● Hard to refactor.
● Easy to ignore errors.
● Many places where a mistake can happen.

Multiplication of
cleanup code

15

C code example - “improved”int doStuff1()
{
 int err = 0;

 char* buffer0 = (char*)malloc(100);
 if (!buffer0)
 return -1;

 FILE* f = fopen("file.txt", "rb");
 if (!f)
 {
 err = -2;
 goto free1;
 }
 fread(buffer0, 100, 1, f);

 char* buffer1 = (char*)malloc(100);
 if (!buffer1)
 {
 err = -2;
 goto free2;
 }

 free(buffer1);
free2:
 fclose(f);
free1:
 free(buffer0);

 return err;
}

Cleanup code is not
duplicated any more!

Yay!

Maintenance nightmare:
● Application logic is still obscured.
● Goto’s are just too easy to break - there is no

structure that the compiler can check.
● Hard to refactor.
● Easy to ignore errors.
● Many places where a mistake can happen.

16

int doStuff1()
{
 int err = 0;

 char* buffer0 = (char*)malloc(100);
 if (!buffer0)
 return -1;

 FILE* f = fopen("file.txt", "rb");
 if (!f)
 {
 err = -2;
 goto free1;
 }
 fread(buffer0, 100, 1, f);

 char* buffer1 = (char*)malloc(100);
 if (!buffer1)
 {
 err = -2;
 goto free2;
 }

 free(buffer1);
free2:
 fclose(f);
free1:
 free(buffer0);

 return err;
}

C++ - using RAII for cleanup
int doStuff2()
{
 unique_ptr<char[]> buffer0(new char[100]);

 fstream f("file.txt");
 if (!f.is_open())
 return -1;

 f.read(buffer0.get(), 100);
 if (!f.good())
 return -2;

 unique_ptr<char[]> buffer1(new char[100]);

 return 0;
}

17

int doStuff1()
{
 int err = 0;

 char* buffer0 = (char*)malloc(100);
 if (!buffer0)
 return -1;

 FILE* f = fopen("file.txt", "rb");
 if (!f)
 {
 err = -2;
 goto free1;
 }
 fread(buffer0, 100, 1, f);

 char* buffer1 = (char*)malloc(100);
 if (!buffer1)
 {
 err = -2;
 goto free2;
 }

 free(buffer1);
free2:
 fclose(f);
free1:
 free(buffer0);

 return err;
}

C++ - using exceptions for error handling
void doStuff3()
{
 unique_ptr<char[]> buffer0(new char[100]);

 fstream f("file.txt");
 f.exceptions(std::ifstream::failbit);
 f.read(buffer0.get(), 100);

 unique_ptr<char[]> buffer1(new char[100]);
}

● Only code that actually does the job.
● Short.
● Easy to understand.
● Easy to refactor.
● All errors are handled.
● All resources are freed.

18

C example - error handling
char* readFile(const char* fileName)
{
 char* buffer = (char*)malloc(100);
 if (!buffer)
 return NULL;

 FILE* f = fopen(fileName, "rb");
 if (!f)
 {
 free(buffer);
 return NULL;
 }

 fread(buffer, 100, 1, f);
 fclose(f);

 return buffer;
}

Error codes contain very little information:
● Very little information about what happened:

○ Often one error code is used for many different
causes (EFAIL, EINVAL, EPERM, Unknown Error).

● No information about context:
○ Which file was not found?
○ Why did we even try to open it?
○ What permissions to which resource were denied,

any why did we even try to get it?
● Often ignored.

19

Rich information in exceptions
char* readFile(const char* fileName)
{
 smart_ptr<char> buffer = allocate(100);
 if (!buffer)
 throw OutOfMemory("Tried to allocate buffer while reading file: ", fileName);

 smart_file f(fileName);
 if (!f)
 throw FileNotFound("Could not open file: ", fileName);

 f.read(buffer);

 return buffer.release();
}

Now we know exactly what
happened and why.

It’s now much easier to analyze
problems.

20

Better example
smart_array<char> readFile(const char* fileName)
{
 auto buffer = allocate(100);

 smart_file f(fileName);
 f.read(buffer);

 return buffer;
}

All error handling and
cleanup is encapsulated.

char* readFile(const char* fileName)
{
 char* buffer = (char*)malloc(100);
 if (!buffer)
 return NULL;

 FILE* f = fopen(fileName, "rb");
 if (!f)
 {
 free(buffer);
 return NULL;
 }

 if (fread(buffer, 100, 1, f) != 100)
 {
 free(buffer);
 fclose(f);
 return NULL;
 }

 fclose(f);

 return buffer;
}In contrast: in C most of the

code is error handling and
cleanup.

21

Conclusions from examples
In C:

● Cleanup code mixed with and obscuring program logic.
● Error handling mixed with and obscuring program logic.
● Code is mostly error handling and cleanup.
● Limited expressiveness of error handling:

○ you need to fit function return value and error code into one value (bad),
○ or use out parameters (ugly),
○ or use static storage like errno (evil).

● Easy to ignore errors.
● Error prone.

In C++:
● Visible program logic.
● Automatic cleanup using destructors.
● Transparent error handling using exceptions.
● Very expressive error handling.
● All errors are handled.
● Bug free.*

22

Cleanup code

23

Stack unwinding - return
void badFunc()
{
 File f;
 Buffer b;

 return;
}

void victimFunc()
{
 Object o;
 badFunc();
}

void catchFunc()
{
 try
 {
 victimFunc();
 }
 catch (...)
 {
 cout << "Exception!" << endl;
 }
}

~File~Buffer

~Object

When a function returns, the stack is
“unwinded”, which means, that all stack
frames are destroyed, one by one.

All local objects are destroyed in order.

24

Stack unwinding - exception
void badFunc()
{
 File f;
 Buffer b;

 throw "Bad.";
}

void victimFunc()
{
 Object o;
 badFunc();
}

void catchFunc()
{
 try
 {
 victimFunc();
 }
 catch (...)
 {
 cout << "Exception!" << endl;
 }
}

~File~Buffer

~Object

When an exception is thrown, the stack is
“unwinded”, which means, that all stack
frames are destroyed, one by one.

All local objects are destroyed as the
exception is leaving their scope.

This exactly the same mechanism, as when
return is used. No magic here!

25

struct Object
{
 ~Object()
 {
 throw "Bad Object!";
 }
};

Throwing from a destructor
void badFunc()
{
 File f;
 Buffer b;

 throw "Bad.";
}

void victimFunc()
{
 Object o;
 badFunc();
}

void catchFunc()
{
 try
 {
 victimFunc();
 }
 catch (...)
 {
 cout << "Exception!" << endl;
 }
}

~File~Buffer

~Object

If you will do this, std::terminate() will be
called, and your app will die.

So don’t throw from destructors.

1

1

2

2

1 2 ???
Since having two exceptions in-flight at the
same time would we weird, it is explicitly
forbidden by the standard.

std::terminate()

26

struct Object
{
 ~Object()
 {
 try
 {
 throw "Bad Object!";
 }
 catch (...)
 {
 cout << "Ignoring exception!" << endl;
 }
 }
};

Throwing inside a destructor
void badFunc()
{
 File f;
 Buffer b;

 throw "Bad.";
}

void victimFunc()
{
 Object o;
 badFunc();
}

void catchFunc()
{
 try
 {
 victimFunc();
 }
 catch (...)
 {
 cout << "Exception!" << endl;
 }
}

~File~Buffer

~Object

1

1

2

1 You can throw inside a destructor, as long
as the exception will not escape from it.

Caught!

No problem
here.

27

Where not to throw

E.16: Destructors, deallocation, and swap must never fail
C.36: A destructor may not fail
C.66: Make move operations noexcept
C.84: A swap function may not fail
C.85: Make swap noexcept

“We don't know how to write reliable programs if a destructor, a swap, or a memory deallocation fails.”

The standard library assumes that destructors, deallocation functions (e.g., operator delete), and swap do
not throw. If they do, basic standard-library invariants are broken.

C.89: Make a hash noexcept
C.86: Make == symmetric with respect to operand types and noexcept

Think about it:
if cleanup code can fails, then
the only thing you can do is kill

the program anyway.

C++ Core
Guidelines

28

struct Object
{
 ~Object()
 {
 someStuffThatThrows();
 }
};

Destructor design guideline

If anything in your destructor might throw, you
have to catch all exceptions.

struct Object
{
 ~Object()
 {
 try
 {
 someStuffThatThrows();
 }
 catch (...)
 {
 cout << "Ignoring exception!" << endl;
 }
 }
};

This means, that errors will be ignored.
Isn’t that a bad thing?

Maybe. But there is not much we can do about it
apart from:

● Designing your cleanup code to never fail.
● Making sure that errors that are important

will be thrown earlier.

29

Designing your cleanup code to never fail

Designing your cleanup code to never fail.
Easy:

● fclose() - guaranteed not to fail.
● free() - guaranteed not to fail.
● delete p - guaranteed not to fail.
● etc…

Hard:
● RPC

30

struct Object
{
 void close()
 {
 someStuffThatThrows();
 }

 ~Object() noexcept
 {
 try
 {
 close();
 }
 catch (...)
 {
 cout << "Ignoring exception!" << endl;
 }
 }
};

Cleanup earlier, or ignore errors

If you want to provide cleanup code that can fail:
● Add a close() method that can throw.
● Call it in destructor, but ignore errors.

This way if the user is interested in cleanup errors,
he can handle them explicitly.

Otherwise they are ignored.

C++ Core
Guidelines

E.16

31

void usingC()
{
 void* obj = gst_alloc_obj();
 SCOPE_EXIT(gst_free_obj(obj));

 gst_open(obj);
 SCOPE_EXIT(gst_close(obj));

 doStuff(obj);
 maybeThrow(obj);
 doMoreStuff(obj);
}

Cleanup code - scope guard

Sometimes it can be useful to have an ad-hoc
cleanup code, for example when using C libraries.

Scope guards can be used for this.

~gst_close(obj)

~gst_free_obj(obj)

C++ Core
Guidelines

E.19

32

Scope guard is a destructor

void usingC()
{
 ...
 BOOST_SCOPE_EXIT()
 {
 try
 {
 someStuffThatThrows();
 }
 catch (...)
 {
 cout << "Ignoring exception!" << endl;
 }
 };
 ...
}

But remember: instructions in scoped guard are
executed in it’s destructor.

So they must not throw!

33

If an error will happen in constructor - throw.
But be careful...

struct Object
{
 int* ptr;

 Object()
 {
 ptr = new int[100];

 loadData(ptr);
 }

 ~Object()
 {
 delete ptr;
 }
};

Constructor design guideline

struct Object
{
 unique_ptr<int[]> ptr;

 Object()
 : ptr(new int[100])
 {
 loadData(ptr);
 }
};

Destructor is called
only if constructor will

succeed.

Use RAII.
Always.

Memory leak if
loadData() throws.

C++ Core
Guidelines

E.5

Use one RAII object for each resource.
Don’t bundle them together, or you will face leaks.

34

If an error will happen in constructor - throw.
Don’t leave an object in a bad state, and provide bool isValid() method.

Guidelines

Use exceptions for
reporting errors.

Avoid writing functions that return bool.
Most often bool is used as an error code:
bool parseFile()

All your objects should either be
in good state, or should not be

created at all.
Don’t worry. If constructor

throws the memory is freed
by new operator.

auto p = new Object();

35

Exception Safety

36

● Basic exception safety
No resource leaks, invariants preserved,
but operation can be half done.

Exception safety guarantees
● No throw guarantee

Operation will not throw.

Like a database
transaction.

Be careful!

Segfaults, memory
corruption, painful

death...

● Strong exception safety
Operation will either succeed, or be rolled back.

● No exception safety
If you will throw exceptions bad things will happen.

37

● No throw guarantee
C functions, like fclose(), can’t throw.
std::swap(a, b) (*terms and conditions apply)

Exception safety examples

If fill() will throw we
have a memory

leak.

Either element
will be added,

or not.

If copy constructor will
throw, only some
elements will be

copied.

● Strong exception safety
std::vector::push_back(a)

● Basic exception safety
void halfDoneCopy(const std::vector<A>& in, std::vector<A>& out)
{
 for (const auto& a : in)
 out.push_back(a);
}

● No exception safety
char* noSafety(const A& a)
{
 char* buffer = new char[100];
 a->fill(buffer);
 return buffer;
}

38

Basic exception safety
No resource leaks, invariants preserved, but operation can be half done. Let’s look at this code:

struct Map
{
 vector<int> keys;
 vector<string> values;

 void insert(int key, string value)
 {
 keys.push_back(key);
 values.push_back(value);
 }

 string get(int key)
 {
 auto pos = std::find(keys.begin(), keys.end(), key);
 if (pos == keys.end()) return {};
 return values[pos - keys.begin()];
 }
};

Does insert() guarantee basic exception safety?

insert() should be documented to state invariant:
sizes of keys and values should be the same.

bad_alloc here
violates the
invariant!

After that it’s
not safe to use

the object.

It’s not enough to use RAII, to be exception safe.
Make extra care to uphold any invariants that you have defined.

Map is not
exception safe!

39

Strong exception safety
Basic idea of writing exception safe code is as follows:
Separate the function into two parts:

● Prepare: can throw, but does not modify the object.
● Commit: doesn’t throw, and modifies the object.

void insert(int key, string value)
{
 auto newKeys = keys;
 auto newValues = values;
 newKeys.push_back(key);
 newValues.push_back(value);

 std::swap(newKeys, keys);
 std::swap(newValues, values);
}

A very inefficient, but illustrative way of making previous code strongly exception safe:

Commit.
Doesn’t throw.

Prepare.
Can throw, but object

is not modified

40

Strong exception safety
Other ways of achieving strong exception safety:

void insert(int key, string value)
{
 keys.push_back(key);
 try
 {
 values.push_back(value);
 }
 catch (...)
 {
 keys.pop_back(key);
 }
}

void insert(int key, string value)
{
 keys.push_back(key);
 ON_FAILURE(keys.pop_back(key));
 values.push_back(value);
}

But in general it’s very difficult to write strongly exception safe code.
If only you can separate function into prepare and commit phases - do it.
Otherwise be very careful.

This works, because vector
guarantees strong exception
safety for push_back() and
no-throw for pop_back().

41

Writing exception safe code
● No throw guarantee

Don’t throw, and don’t use anything, that throws.
Use noexcept to mark functions as non-throwing.

● Strong exception safety
Very difficult.
Separate your functions into prepare and commit phases if possible.
std::swap() can help with the commit code.

● Basic exception safety
Use RAII.
Make sure your destructors don’t throw.
Make extra care to uphold any invariants that you have defined.

● No exception safety
Use RAII everywhere, even if you don’t use exceptions.

42

Why people don’t use
exceptions

43

Why people don’t use exceptions
● I’ve never used them and I don’t know how.
● I don’t know what will happen.

○ We know exactly what will happen. It’s exactly like return.
● Number of possible paths through code increases

○ It doesn’t, unless you ignore errors.
● Number of possible program states increases.

○ Number of possible program states is largely irrelevant.
○ As long as the invariants hold, it’s fine.
○ That is a big problem in Java, C#, Python etc. where we can’t enforce invariants by program

construction.
● I don’t see where my code may be interrupted, so I can’t write correct code.
● If everything can throw, I don’t know how to write correct code.

○ You need to pay attention to what throws only in places, where you violate invariants.
○ In all the rest of the code - you don’t care.

● It’s slow.
○ Turning on exceptions makes C programs slower by ~3% (maybe).
○ Rewriting code to use exceptions can recuperate those losses. Or not. There are no

trustworthy benchmarks for that.
○ Throwing exceptions is slow. Fact.

44

Good reasons not to use exceptions
There are many anti-exceptions myths around.
We know of only a few good reasons:

● You have 2K of memory.
● You are in hard-real-time.
● You have spaghetti code.
● Your C++ compiler sucks.
● You'll get fired for challenging your manager's ancient wisdom.

C++ Core
Guidelines

E.6

45

Technicalities

46

How exceptions are implemented
There are two main approaches:

1. Dynamic construction of list of all cleanup actions that need to be called.

2. Static tables, generated during compilation.
○ compressed by generating them as VM code

Itanium ABI - two phase unwinding:
● search and terminate if catch was not found,
● unwind and cleanup.

Videos:
C++ Exception Handling - The gory details of an implementation
CppCon 2017: Dave Watson “C++ Exceptions and Stack Unwinding”

Godbolt

47

https://www.youtube.com/watch?v=XpRL7exdFL8
https://www.youtube.com/watch?v=_Ivd3qzgT7U
https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(fontScale:1.5479341055999998,j:1,lang:c%2B%2B,source:'%23include+%3Ccstdlib%3E%0A%23include+%3Cvector%3E%0A%0Astruct+raii+%7B%0A++++int+a%3B%0A++++raii(int+a)+:+a(a)+%7B%7D%0A++++__attribute__+((noinline))+~raii()+%7B+srand(a)%3B+%7D%0A%7D%3B%0A%0Aint+__attribute__+((noinline))+f(int+a)+%7B%0A++++if+(rand()+%3D%3D+0)%0A++++++++throw+5%3B%0A++++return+a%3B%0A%7D%0A%0Aint+__attribute__+((noinline))+g(int+a)+%7B%0A++++//raii+r(a)%3B%0A++++return+f(a)+%2B+5%3B%0A%7D%0A%0Aint+main(int+argc,+char**+argv)+%7B%0A++++try+%7B%0A++++++++int+a+%3D+g(argc)%3B%0A++++++++return+a%3B%0A++++%7D+catch(int+a)+%7B%0A++++++++return+a+%2B+3%3B%0A++++%7D%0A%7D%0A%0Axx'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g73,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'0'),fontScale:1.5479341055999998,lang:c%2B%2B,libs:!(),options:'-std%3Dc%2B%2B14+-O3',source:1),l:'5',n:'0',o:'x86-64+gcc+7.3+(Editor+%231,+Compiler+%231)+C%2B%2B',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Catch by const reference
Exceptions should be caught by const reference.
Consider this example:

void catchFunc()
{
 try
 {
 throw MyException();
 }
 catch (MyException exc)
 {
 cout << "Exception!" << endl;
 }
}

MyExceptionMyException is stored on the side

MyException is copied

MyException exc

Copy is unnecessary here. So just catch by reference.
Use const to underline the fact, that you don’t modify the exception.

48

C++ Core
Guidelines

E.15

Catch by const reference - slicing
Slicing can happen when catching by value the same way it happens when passing
parameters by value. Consider this example:

void catchFunc()
{
 try
 {
 throw MyDerivedException();
 }
 catch (MyBaseException exc)
 {
 cout << "Exception: " << exc.name() << endl;
 }
}

MyDerivedException

MyBaseException exc

Slicing Will print:
MyBaseException

void catchFunc()
{
 try
 {
 throw MyDerivedException();
 }
 catch (const MyBaseException& exc)
 {
 cout << "Exception: " << exc.name() << endl;
 }
}

MyDerivedException

No copy

Will print:
MyDerivedException

49

throw vs throw exc
Normally you use “throw exc;” to throw.
Inside a catch block you can use “throw;” to re-throw current exception.

void catchFunc()
{
 try
 {
 throw MyDerivedException();
 }
 catch (MyBaseException exc)
 {
 throw exc;
 }
}

MyDerivedException

MyBaseException exc

Copy

void catchFunc()
{
 try
 {
 throw MyDerivedException();
 }
 catch (MyBaseException exc)
 {
 throw;
 }
}

MyDerivedException

MyBaseException exc

Copy

Will throw original exception:
MyDerivedException

Will throw exc.
MyBaseException

50

noexcept
noexcept is used to mark functions that don’t throw exceptions.
If you will throw from such function std::terminate() will be called.

void lyingFunc() noexcept
{
 throw MyException();
}

std::terminate()

C++ Core
Guidelines

E.12

51

noexcept moves and optimisations

T has noexcept move
constructor

push_back() will use moves efficient

otherwise push_back() will use copies less efficient

noexcept is used often to mark copy and move constructors, as well as std::swap() overloads.
Based on those decorations a more efficient implementation of some function can be called.
Example:

std::vector<T>::push_back() (must be strongly exception safe)

52

C functions must not throw
C functions are not expected to throw.

If you want to pass a callback into a C api - don’t throw.

void bad_callback()
{
 throw 7;
}

void use_c_api()
{
 power_register_callback(&bad_callback, NULL);
}

C:
● doesn’t know about exceptions,
● doesn’t have destructors,
● doesn’t have code for unwinding stack,
● might not even generate stack frames,
● etc...

int nicer_callback()
{
 try
 {
 possiblyThrow();
 return ESUCCESS;
 }
 catch (...)
 {
 return EFAIL;
 }
}

So remember
to catch.

53

Consistent exception handling
How can we refactor the error handling code to reduce duplication?

void doSomeWork()
{
 try
 {
 someWork();
 }
 catch (const NetworkError& exc)
 {
 loadFromFile();
 }
 catch (const InvalidData& exc)
 {
 dropConnection();
 }
 catch (const TooMuchData& exc)
 {
 reSendSmallerRequest();
 }
}

void doSomeOtherWork()
{
 try
 {
 otherWork();
 otherStuff();
 }
 catch (const NetworkError& exc)
 {
 loadFromFile();
 }
 catch (const InvalidData& exc)
 {
 dropConnection();
 }
 catch (const TooMuchData& exc)
 {
 reSendSmallerRequest();
 }
}

void doNothing()
{
 try
 {
 sleep();
 wait();
 sleep();
 }
 catch (const NetworkError& exc)
 {
 loadFromFile();
 }
 catch (const InvalidData& exc)
 {
 dropConnection();
 }
 catch (const TooMuchData& exc)
 {
 reSendSmallerRequest();
 }
}

54

Consistent exception handling
We can use Lippincott Functions (aka. exception dispatcher).

void doSomeWork()
{
 try
 {
 someWork();
 }
 catch (...)
 {
 handleExceptions();
 }
}

void doSomeOtherWork()
{
 try
 {
 otherWork();
 otherStuff();
 }
 catch (...)
 {
 handleExceptions();
 }
}

void handleExceptions()
{
 try
 {
 throw;
 }
 catch (const NetworkError& exc)
 {
 loadFromFile();
 }
 catch (const InvalidData& exc)
 {
 dropConnection();
 }
 catch (const TooMuchData& exc)
 {
 reSendSmallerRequest();
 }
}

Catch any exception, and let
exception handling function take

care of it.

Current exception is a
thread-local global, so it
can be accessed inside

handleExceptions().

55

What to throw
and

when to catch

56

Exceptions in C++ standard library
All exceptions generated by the standard library
inherit from std::exception.

There are two semantic classes of exceptions:

logic_error - when invariants are violated.

runtime_error - failures caused by the environment.

logic_error
invalid_argument
domain_error
length_error
out_of_range
future_error (C++11)

runtime_error
range_error
overflow_error
underflow_error
regex_error (C++11)
tx_exception (TM TS)
system_error (C++11)

ios_base::failure (C++11)
filesystem::filesystem_error (C++17)

bad_typeid
bad_cast

bad_any_cast (C++17)
bad_weak_ptr (C++11)
bad_function_call (C++11)
bad_alloc

bad_array_new_length (C++11)
bad_exception
ios_base::failure (until C++11)
bad_variant_access (C++17)

Your
program has

a bug.

I.e.when
network
failed.And some commonly encountered exceptions:

bad_alloc - memory allocation failed.

bad_cast - dynamic_cast failed.

ios_base::failure - iostreams operation failed.

57

What to throw?
It doesn’t really matter that much.
As you see, std::exception is not magic.
It’s just a very simple class.

class exception {
public:
 exception() noexcept;
 exception(const exception&) noexcept;
 exception& operator=(const exception&) noexcept;
 virtual ~exception();

 virtual const char* what() const noexcept;
};

If you don’t need to handle
two failure cases

differently - don’t create
different exceptions.

If you don’t need special
handling for some error - just

use std::runtime_error.

You can derive from std::exception, logic_error or
runtime_error.
But you can just as well write your own class.

What is important is to understand the basic principle:
Exception classes are semantic tags, that you can use to differentiate failure causes.

58

● Create exception classes only when actually needed to solve a problem.
○ I need to show OpenFile dialog on FileNotFound error.
○ I need to show error message on FileNotFound error.

C++ Core
Guidelines

E.14

Guideline
● Start with throwing std::runtime_error.

If you need to catch exceptions - create your own exception class.
Create

FileNotFound
exception.

Just use
std::runtime_error(“

File not found.”).

MyException
MyBackendException

FileNotFoundInBackend
BackendUnknownFailure

MyApplicationException
FileNotFoundApplication
ApplicationUnknownFailure

NetworkException
CurlException
HttpException

RangeHeaderIgnoredException

Why?

But in some cases
we need different

handling.

We generally
need common

handling.

● Don’t create inheritance hierarchy, unless it actually serves a purpose.

59

When to catch?

You should catch them only when you can do
something meaningful with them.

There is a simple guideline for this:

Don’t catch exceptions.

C++ Core
Guidelines
E.17 E.18

Top level is where you need
to transform exception into
something else, like DBus
message or UI message.

It can also be module or API
boundary.

Otherwise just let them fly to the top level.
On the top level report failure and continue or exit.

In particular don’t catch exceptions just to throw a
different one.

60

Example
void parseConfigFile(const std::string& fileName)
{
 std::string data;
 try
 {
 data = readFile(fileName);
 }
 catch (const FileNotFound& exc)
 {
 throw ParsingError("File not found.");
 }
 catch (const FileReadError& exc)
 {
 throw ParsingError("File read error.")
 }

 try
 {
 parse(data);
 }
 catch (const bad_alloc& exc)
 {
 throw ParsingError("Out of memory.")
 }
}

void parseConfigFile(const std::string& fileName)
{
 std::string data = readFile(fileName);
 parse(data);
}

Just let the
exceptions fly.

“Often the best way to deal with exceptions
is to not handle them at all. If you can let
them pass through your code and allow
destructors to handle cleanup, your code
will be cleaner.” David Abrahams

61

Exception propagation

62

Exception propagation
void main()
{
 startBackgroundWork();

 sleep(5000);

 int result;
 getBackgroundResult(result);
}

void backgroundWork(int& result)
{
 if (random(0, 1) == 1)
 result = work();
 else
 throw std::exception("I'm lazy.");
}Get result

Start thread

Get exception?

We need a way to capture an exception,
and pass it to the calling thread.

Problem: we don’t know the type of the exception.
It can be anything.
So a simple parameter won’t do.

void backgroundWork(int& result, T? exception)
{
 try
 {
 if (random(0, 1) == 1)
 result = work();
 else
 throw std::exception("I'm lazy.");
 }
 catch (...)
 {
 exception = ?;
 }
}

63

Exception pointers
Fortunately there is a mechanism for storing any exception:

std::exception_ptr

std::exception_ptr is like a shared_ptr to a copy or reference of the current exception.

void backgroundWork(int& result, std::exception_ptr& exception)
{
 try
 {
 if (random(0, 1) == 1)
 result = work();
 else
 throw std::exception("I'm lazy.");
 }
 catch (...)
 {
 exception = std::current_exception();
 }
}

64

What can we do with std::exception_pointer?
Not much.

● We can copy it.
● We can create one from exception object: std::make_exception_ptr(MyException())
● We can check if it’s not null.
● But most importantly we can re-throw the underlying exception.

void main()
{
 startBackgroundWork();

 sleep(5000);

 int result;
 std::exception_ptr exc;

 getBackgroundResult(result, exc);

 if (exc)
 std::rethrow_exception(exc);
}

void backgroundWork(int& result, std::exception_ptr& exception)
{
 try
 {
 if (random(0, 1) == 1)
 result = work();
 else
 throw std::exception("I'm lazy.");
 }
 catch (...)
 {
 exception = std::current_exception();
 }
}

Similarly we can propagate
from C callbacks.

65

Lippincott functions revisited
We can implement Lippincott functions using std::exception_pointer.

void doSomeWork()
{
 try
 {
 someWork();
 }
 catch (...)
 {
 auto exc = std::current_exception();
 handleExceptions(exc);
 }
}

void handleExceptions(const std::exception_ptr& exc)
{
 try
 {
 if (exc)
 std::rethrow_exception(exc);
 }
 catch (const NetworkError& exc)
 {
 loadFromFile();
 }
 catch (const InvalidData& exc)
 {
 dropConnection();
 }
 catch (const TooMuchData& exc)
 {
 reSendSmallerRequest();
 }
}

66

Futures
std::future<T> is a class that can be used to wait
for some background computation to finish.

It can be in the following states:

● waiting for result,
● holding a result,
● holding an exception thrown while

computing the value in background.

std::promise<int> promise;

void threadMethod()

{

 try

 {

 int result = computation();

 promise.set_value(result);

 }

 catch(...)

 {

 promise.set_exception(std::current_exception());

 }

}

void main()

{

 boost::thread thread(&threadMethod);

 boost::future<int> future = promise.get_future();

 // waits until computation ends...

 // ...then returns result or throws

 int result = future.get();

 thread.join();

} 67

Propagation through network, DBus, etc.
Often we want to propagate exceptions from another process, or another time:

● network connection,
● RPC,
● file storage (result serialization),
● database,
● different language,
● etc.

Exceptions can be arbitrary types.
There is no silver bullet.

● Serialize important exceptions.
● Pass the rest as generic exception.

○ Include full information about original exception as string.

68

Catch that doesn’t catch
Consider this exception hierarchy:
class ExceptionA : public std::exception
{};

class ExceptionB : public std::exception
{};

class ExceptionC : public ExceptionA, public ExceptionB
{};

ExceptionC has two
sub-objects of type

std::exception.

How will this work?
void main()
{
 try
 {
 throw ExceptionC();
 }
 catch(const std::exception& exc) {
 cout << "Std!" << endl;
 }
 catch(...) {
 cout << "Other!" << endl;
 }
}

Ambiguity. This catch
will be ignored.

This catch clause
will be used instead.

So use virtual
inheritance for

exceptions.
69

Adding information to
exceptions

boost::exception

70

Nested exceptions
Sometimes it is useful to catch one exception, but throw another.
In that case, to avoid losing information about the original cause of the problem, we can store one
exception in another.

struct MyException
{
 MyException(const char* message, std::exception_ptr cause)
 : m_message(message)
 , m_cause(cause)
 {}

 const char* m_message;
 std::exception_ptr m_cause;
};

void myFunction()
{
 try
 {
 doWork();
 }
 catch (...)
 {
 auto exc = std::current_exception();
 throw MyException("myFunction failed", exc);
 }
}

71

std::nested_exception
Fortunately there is no need to manually support nested exceptions.
Support for them is included in the C++ standard.

struct _InternalExc : Exception, std::nested_exception
{
 _InternalExc(const Exception& exc)
 : Exception(exc)
 , nested_exception(std::current_exception())
 {}
};

void throw_with_nested(const Exception& exc)
{
 throw _InternalExc(exc);
}

void rethow_if_nested(const Exception& exc)
{
 auto nested = dynamic_cast<std::nested_exception*>(&exc);
 if (nested)
 {
 nested->rethrow_nested();
 }
}

std::rethrow_if_nested(exc)
Extracts nested exception, and throws it.

std::throw_with_nested(Exception())
Throws Exception with current
exception stored within it.

Multiple inheritance trick
used to add exception_ptr

field to your exception class.
72

boost::exception
Boost exception is a library, that invented:

● exception_ptr,
● current_exception.

It has since became part of the C++ standard.

#include <boost/exception/all.hpp>

class MyException : public virtual boost::exception, virtual public std::exception
{
 ...
};

Deriving from
std::exception is optional.

One feature however was not included in the standard:
● ability to attach arbitrary data to exceptions.

This powerful functionality can be leveraged by deriving your exceptions from boost::exception, like this:

73

Attaching information to exceptions
To any type deriving from boost::exception you can attach arbitrary data, using error_info.
boost::exception is a container of error_info objects.

#include <boost/exception/all.hpp>
#include <boost/exception/errinfo_errno.hpp>

class MyException : public virtual boost::exception, public virtual std::exception
{};

void myFunction()
{
 int result = fddup(STDIN);
 if (result != 0)
 {
 throw MyException() << errinfo_errno(errno) << throw_file(__FILE__) << throw_line(__LINE__);
 }
}

74

Extracting information from exceptions
You can extract error_info data from boost::exception using get_error_info.

class MyException : public virtual boost::exception, public virtual std::exception
{};

void myFunction()
{
 int result = fddup(STDIN);
 if (result != 0)
 throw MyException() << errinfo_errno(errno) << throw_file(__FILE__) << throw_line(__LINE__);
}

void main()
{
 try
 {
 myFunction();
 }
 catch (const boost::exception& x)
 {
 const int* e = boost::get_error_info<errinfo_errno>(x);
 if (e)
 cout << "Errno was: " << *e << endl;
 }
}

Get pointer to specified
error_info object.

75

error_info is just:
● a tag,
● a value.

Writing your own error_infos

Writing your own error_infos is very simple:

#include <boost/exception/error_info.hpp>

typedef boost::error_info<struct tag_errno, int> errno_info;

typedef boost::error_info<struct tag_severity, int> severity_info;

typedef boost::error_info<struct tag_description, std::string> description_info;

Usage:

BOOST_THROW_EXCEPTION(MyException("Oops!") << errno_info(errno) << description_info("Bad bug."));

errinfo_api_function
errinfo_at_line
errinfo_errno
errinfo_file_handle
errinfo_file_name
errinfo_file_open_mode
errinfo_nested_exception
errinfo_type_info_name

76

current_exception_diagnostic_information
Instead of extracting all data by hand, you can use boost::current_exception_diagnostic_information()
helper function, that will create a nice log message for you, with all the data.

struct MyException : virtual boost::exception, virtual std::exception {
 MyException(const char* msg) : std::exception(msg) {}
};

void myFunction()
{
 int result = fddup(STDIN);
 if (result != 0)
 throw MyException("Oops!") << errinfo_errno(errno)
 << throw_function("myFunction") << errinfo_api_function("fddup")
 << throw_file(__FILE__) << throw_line(__LINE__);
}

void main()
{
 try
 {
 myFunction();
 }
 catch (...)
 {
 cout << boost::current_exception_diagnostic_information() << endl;
 }
}

h:\vsprojects\exceptions\main.cpp(865): Throw in function myFunction
Dynamic exception type: struct MyException
std::exception::what: Oops!
[struct boost::errinfo_api_function_ *] = fddup
0, "No error"

77

BOOST_THROW_EXCEPTION
BOOST_THROW_EXCEPTION is a helper macro, that:

● ensures, that boost::current_exception() works,
● automatically adds:

○ throw_function
○ throw_file
○ throw_line

void myFunction()
{
 int result = fddup(STDIN);
 if (result != 0)
 BOOST_THROW_EXCEPTION(MyException("Oops!") << errinfo_errno(errno) << errinfo_api_function("fddup"));

}

h:\exceptions\main.cpp(872): Throw in function void __cdecl myFunction(void)
Dynamic exception type: class boost::exception_detail::clone_impl<struct MyException>
std::exception::what: Oops!
[struct boost::errinfo_api_function_ *] = fddup
0, "No error"

78

Writing your own exception classes
Prefer empty classes, that inherit virtually from std::exception and boost::exception.
Attach all necessary data using error_infos.

struct MyException : public virtual boost::exception, public std::exception
{};

C++ Core
Guidelines

E.14

Don’t overload the meaning of exceptions from standard library.
Create your own exceptions for each purpose.

Inheriting from std::exception is a convention.

79

Thread interruption

80

How to stop background work?
Killing a thread is not an option.

● Memory leaks.
● Violated invariants.
● Locked mutexes.
● Etc.

POSIX thread interruption is not an option.
● Doesn’t work with C++.

Destructors are not
called.

Destructors are not
called.

Constantly checking the exitFlag?
● Manual work.
● Intrusive.
● Obfuscates the code.
● Requires modifications on all levels.
● Difficult to make sure you won’t block.

How often should
we check the

exitFlag?

81

Problem: passing of exitFlag
void backgroundWork(bool& exitFlag)
{
 while (!exitFlag)
 {
 waitForEvent();

 if (exitFlag)
 return;

 processData(exitFlag);

 if (exitFlag)
 return;

 doMore();
 }
}

void processData(bool& exitFlag)
{
 doStuff();

 if (exitFlag)
 return;

 doMoreStuff(exitFlag);
}

void doMoreStuff(bool& exitFlag)
{
 doStuff();

 if (exitFlag)
 return;

 doMore();
}

Solution: exitFlag should be a thread-global variable.

82

Problem: propagating cancel from bottom layers
void backgroundWork(bool& exitFlag)
{
 while (!exitFlag)
 {
 waitForEvent();

 if (exitFlag)
 return;

 result = calculateResult(exitFlag);

 if (exitFlag)
 return;

 doMore();
 }
}

Solution: use exceptions to propagate the interruption.

float calculateResult(bool& exitFlag)
{
 for (int i = 0; i < 100000; ++i)
 {
 calculate();
 if (exitFlag)
 return -1.0f;
 }

 return 5.0f;
}

Magic number
that means
“cancelled”.

83

Normal exitFlag
checks won’t help

here.

Problem: when to check exitFlag
Usually exitFlag is checked when
convenient:

● at the beginning of functions.
● once per loop iteration.
● etc.

When should exitFlag be checked?

During time consuming operations:
● while waiting for IO operation.
● while waiting for an event.
● while waiting for some time.
● during CPU intensive operations.

84

● Function for setting interruption flag of a thread:

Solution: boost interruption
Boost Thread library provides support for thread interruption. It consists of the following pieces:

● Each waiting function will throw boost::interrupted exception as soon as the interruption flag is set:

● Each thread has a thread-global interruption flag.

boost::thread::join()
boost::condition_variable::wait()
boost::thread::sleep()
etc...

● One can add manual check, which will throw boost::interrupted exception if the flag is set:

boost::this_thread::interruption_point()

boost::thread::interrupt()

85

Example: before
void backgroundWork(bool& exitFlag)
{
 while (!exitFlag)
 {
 waitForEvent();

 if (exitFlag)
 return;

 result = calculateResult(exitFlag);

 if (exitFlag)
 return;

 doMore();
 }
}

void main()
{
 bool exitFlag = false;
 boost::thread t(&backgroundWork, exitFlag);

 exitFlag = true;

 t.join();
}

float calculateResult(bool& exitFlag)
{
 for (int i = 0; i < 100000; ++i)
 {
 calculate();
 if (exitFlag)
 return -1.0f;
 }

 return 5.0f;
}

UB

86

Example: after

● No exitFlag.
● Manual checks are rare.
● Almost no extra work is necessary.
● Code is interruptible by default.

void backgroundWork()
{
 while (true)
 {
 waitForEvent();

 result = calculateResult();

 doMore();
 }
}

float calculateResult()
{
 for (int i = 0; i < 100000; ++i)
 {
 calculate();
 boost::interruption_point();
 }

 return 5.0f;
}

Manual
check.

void main()
{
 boost::thread t(&backgroundWork);

 t.interrupt();

 t.join();
}

87

Interrupting destructors
Destructors cannot throw.
Extra care needs to be taken, when writing destructors with interruptible functions inside.

struct Worker
{
 boost::thread t;

 Worker()
 : t(&workFunction)
 {}

 ~Worker()
 {
 t.join();
 }
};

struct Worker
{
 boost::thread t;

 Worker()
 : t(&workFunction)
 {}

 ~Worker()
 {
 boost::disable_interruption di;
 t.join();
 }
};

88

Interrupting threads
No exception is allowed to fly from the thread function.
So catch, and propagate.

void backgroundWork()
{
 try
 {
 while (true)
 {
 waitForEvent();

 result = calculateResult();

 doMore();
 }
 promise.set_value(result);
 }
 catch (const boost::thread_interrupted&)
 {
 promise.set_exception(Cancelled());
 }
 catch (...)
 {
 promise.set_exception(std::current_exception());
 }
}

89

More technicalities

90

Why C++ doesn’t have finally?

Because we have destructors.
Ad-hoc cleanup is bad. Use RAII.

91

void usingC()
{
 void* obj = gst_alloc_obj();
 SCOPE_EXIT(gst_free_obj(obj));

 doStuff(obj);
}

ON_SUCCESS, ON_FAILURE

Scope guards are used for unconditional cleanup.

void usingDatabase()
{
 auto t = startDatabaseTransaction();
 ON_SUCCESS(t.commit());
 ON_FAILURE(t.rolback());

 t.insert(stuff);
 t.remove(others)
}

Andrei Alexandrescu proposed two more kinds of scope guards:
● ON_SUCCESS will execute code if function exits normally.
● ON_FAILURE will execute code if function exits because of an exception.

Generic
Scope
Guard

p0052r7

C++ Core
Guidelines

E.19

92

noexcept destructors by default

It’s a bad idea to throw from destructors.

That’s why in C++ 11 destructors are by default noexcept.
● Unless they call a base or member destructor, that is noexcept(false).

If you want to throw from a destructor, you have to mark it as noexcept(false).

This is a breaking
change in C++ 11

standard.

93

noexcept operator

C++ 11 adds a noexcept operator.
It can be used to conditionally execute code, or to more precisely define noexcept specifications.

template<typename T>
const char* getNameSafe(const T& object) noexcept
{
 if (noexcept(object.name()))
 return object.name();

 return "Name can throw."
}

template<typename T>
T maybeTrow() noexcept(sizeof(T) < 4)
{
 ...
}

template<typename T>
class MyValue
{
 void setDefault() noexcept(noexcept(T()))
 {
 std::swap(v, T());
 }

 void set(const T& item)
 noexcept(std::is_nothrow_copy_assignable<T>::value)
 {
 v = item;
 }

 T v;
};

94

Polymorphic throw

“throw e” statement throws an object with the same type as the static type of the expression e.

void doThrow(MyExceptionBase& e)
{
 throw e;
}

void throwAndCatch()
{
 MyExceptionDerived e;
 try
 {
 doThrow(e);
 }
 catch (MyExceptionDerived& e)
 {
 cout << "MyExceptionDerived.";
 }
 catch (...)
 {
 cout << "Something else.";
 }
}

Static type is
MyExceptionBase.

This will match.

95

void push_back(const T& v);
void pop_back();

Why pop_back() returns void?

Vector interface:

void push_back(const T& v);
T pop_back();

Why not?

T pop_back()
{
 if(empty())
 throw "Empty!";

 size--;

 return v[size];
}

Consider the implementation:

What if T’s copy
constructor throws?

Not possible to
achieve strong

exception safety
in this case.

Guru of
the Week

8

96

// Example 1(a): Constructor function-try-block

//

C::C()

try

 : A (/*...*/) // optional initialization list

 , b_(/*...*/)

{

}

catch(...)

{

 // We get here if either A::A() or B::B() throws.

 // If A::A() succeeds and then B::B() throws, the

 // language guarantees that A::~A() will be called

 // to destroy the already-created A base subobject

 // before control reaches this catch block.

}

Function try blocks
Guru of

the Week
66

97

Breakpoints on throw

98

Debuggers support setting breakpoints on throw of given exception type.

Stack traces

99

Exceptions in C++ don’t have stacktraces.
All the unwinding machinery is there (in some implementations), but there is no way to access it.
Maybe in the future we will get standard way of getting stack traces.

● You can always use libunwind or StackWalker,
● And add stacktrace to your boost::exception as another error_info.

The End

Video: CppCon 2014: Exception-Safe Code, Jon Kalb
https://youtu.be/W7fIy_54y-w

Exceptions and Error Handling FAQ, C++ Standards Committee
https://isocpp.org/wiki/faq/exceptions

Video: Systematic Error Handling in C++, Andrei Alexandrescu
https://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-2012-Andrei-Alexandrescu-
Systematic-Error-Handling-in-C

Boost Exception Tutorial:
http://www.boost.org/doc/libs/1_61_0/libs/exception/doc/boost-exception.html

C++ Core Guidelines, Bjarne Stroustrup and Herb Sutter
https://github.com/isocpp/CppCoreGuidelines

Video: C++ Exception Handling - The gory details of an implementation, Peter Edwards
https://www.youtube.com/watch?v=XpRL7exdFL8
Video: C++ Exceptions and Stack Unwinding, Dave Watson
https://www.youtube.com/watch?v=_Ivd3qzgT7U

Interrupt Politely, Herb Sutter
http://www.drdobbs.com/parallel/interrupt-politely/207100682

Change the Way You Write Exception-Safe Code - Forever, Andrei Alexandrescu and Petru
Marginean
http://www.drdobbs.com/cpp/generic-change-the-way-you-write-excepti/184403758

Exception Safety, Herb Sutter
http://www.gotw.ca/gotw/008.htm

Exception-Safe Class Design, Herb Sutter
http://www.gotw.ca/gotw/059.htm

100

https://youtu.be/W7fIy_54y-w
https://isocpp.org/wiki/faq/exceptions
https://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-2012-Andrei-Alexandrescu-Systematic-Error-Handling-in-C
https://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-2012-Andrei-Alexandrescu-Systematic-Error-Handling-in-C
http://www.boost.org/doc/libs/1_61_0/libs/exception/doc/boost-exception.html
https://github.com/isocpp/CppCoreGuidelines
https://www.youtube.com/watch?v=XpRL7exdFL8
https://www.youtube.com/watch?v=_Ivd3qzgT7U
http://www.drdobbs.com/parallel/interrupt-politely/207100682
http://www.drdobbs.com/cpp/generic-change-the-way-you-write-excepti/184403758
http://www.gotw.ca/gotw/008.htm
http://www.gotw.ca/gotw/059.htm

