
Why are we here?

Why are we here?
https://news.ycombinator.com/item?id=7836283

Why are we here?
https://news.ycombinator.com/item?id=7836283

http://blog.regehr.org/archives/715#comment-4242

LLVM
in the context of

Software Safety

How are our programs attacked?

Which LLVM tools enhance
software safety?

Inga Rüb (inga.roksana.rueb@gmail.com)

LLVM
in the context of

Software Safety

How are our programs attacked?

Which LLVM tools enhance
software safety?

Inga Rüb (inga.roksana.rueb@gmail.com)

LLVM
in the context of

Software Safety

How are our programs attacked?

Which LLVM tools enhance
software safety?

Inga Rüb (inga.roksana.rueb@gmail.com)

Let’s talk about:
● Bases of memory management for a single process

● Exemplary exploits: how-to

● LLVM tools that prevents some of software attacks

Let’s talk about:
● Bases of memory management for a single process

● Exemplary exploits: how-to

● LLVM tools that prevents some of software attacks

Let’s talk about:
● Bases of memory management for a single process

● Exemplary exploits: how-to

● LLVM tools that prevents some of software attacks

Presented information refers to Linux 32-bit distributions.

Let’s talk about:
● Bases of memory management for a single process

● Exemplary exploits: how-to

● LLVM tools that prevents some of software attacks

Presented information refers to Linux 32-bit distributions.

because of the level of complexity

because of personal preferences

Bases of memory management

Structure of process memory

Calling convention

Virtual memory
At a time there is 4GB of virtual memory reserved.

process switch

kernel space
1 GB

user space
3 GB

Virtual addresses are mapped to physical memory.

User space

stack

memory mapping segment

heap

data segment

text segment

BSS segment

0xc0000000

0x08048000

start_brk

brk

User space

stack

memory mapping segment

heap

data segment

text segment

BSS segment

0xc0000000

0x08048000

start_brk

brk

text segment (code segment)

corresponds to a part of an object file and
contains executable instructions

read-only

fixed size

User space

stack

memory mapping segment

heap

data segment

text segment

BSS segment

0xc0000000

0x08048000

start_brk

brk

data segment

contains any global or static variables which
have a predefined value and can be modified

read-write

fixed size

maps a file - private memory mapping

User space

stack

memory mapping segment

heap

data segment

text segment

BSS segment

0xc0000000

0x08048000

start_brk

brk

BSS segment

memory initialized with zeroes that represent
uninitialized static variables

read-write

fixed size

User space

stack

memory mapping segment

heap

data segment

text segment

BSS segment

0xc0000000

0x08048000

start_brk

brk

heap

contains the dynamically allocated memory

read-write

dynamic size

User space

stack

memory mapping segment

heap

data segment

text segment

BSS segment

0xc0000000

0x08048000

start_brk

brk

memory management segment

a direct byte-for-byte correlation with some
portion of a file or file-like resource

read-write

dynamic size

mmap() syscall

User space

stack

memory mapping segment

heap

data segment

text segment

BSS segment

0xc0000000

0x08048000

start_brk

brk

stack

stores local variables and function
parameters

read-write

dynamic size

its size can be extended but is there is a limit
(RLIMIT_STACK)

memory mapping segment

User space

stack

heap

data segment
BSS segment

0xc0000000

0x08048000

start_brk

brk

offsets

present because of safety reasons

dynamic size (initially: random)

any access triggers a segfault

memory mapping segment

text segment

Bases of memory management

Structure of process memory

Calling convention

Stack frame - prolog
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

esp
bf ff f6 dc

ebp
00 00 00 00

start_main
return address to

libc

start_mainStack frame - prolog
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 d8

ebp
00 00 00 00

return address to
libc

saved ebp

start_mainStack frame - prolog
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 d8

ebp
bf ff f6 d8

return address to
libc

saved ebp

start_mainStack frame - locals
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 cc

ebp
bf ff f6 d8

?? ?? ?? ??

?? ?? ?? ??

?? ?? ?? ??

return address to
libc

saved ebp

answer

b

a

start_mainStack frame - locals
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 cc

ebp
bf ff f6 d8

?? ?? ?? ??

02 00 00 00

28 00 00 00

return address to
libc

saved ebp

answer

b

a

start_mainStack frame - call
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c8

ebp
bf ff f6 d8

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

return address to
libc

saved ebp

answer

b

a

return address to
main

start_mainStack frame - callee
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c4

ebp
bf ff f6 d8

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

main

return address to
libc

saved ebp

answer

b

a

return address to
main

saved ebp

start_mainStack frame - callee
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c4

ebp
bf ff f6 c4

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

main

return address to
libc

saved ebp

answer

b

a

return address to
main

saved ebp

start_mainStack frame - callee
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c0

ebp
bf ff f6 c4

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

main

?? ?? ?? ??

return address to
libc

saved ebp

answer

b

a

return address to
main

saved ebp

result

start_mainStack frame - callee
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

return address to
libc

saved ebp 00 00 00 00

esp
bf ff f6 c0

ebp
bf ff f6 c4

?? ?? ?? ??answer

02 00 00 00b

28 00 00 00a

main.c:10
return address to

main

mainsaved ebp

2a 00 00 00result

start_mainStack frame - callee
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

return address to
libc

saved ebp 00 00 00 00

esp
bf ff f6 c0

ebp
bf ff f6 c4

?? ?? ?? ??answer

02 00 00 00b

28 00 00 00a

main.c:10
return address to

main

mainsaved ebp

2a 00 00 00result

eax
2a 00 00 00

start_mainStack frame - epilogue
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c4

ebp
bf ff f6 c4

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

main

return address to
libc

saved ebp

answer

b

a

return address to
main

saved ebp

eax
2a 00 00 00

start_mainStack frame - epilogue
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c4

ebp
bf ff f6 d8

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

main

return address to
libc

saved ebp

answer

b

a

return address to
main

saved ebp

eax
2a 00 00 00

start_main

0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c8

ebp
bf ff f6 d8

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

Stack frame - epilogue return address to
libc

saved ebp

answer

b

a

return address to
main

eax
2a 00 00 00

start_main

0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 c4

ebp
bf ff f6 d8

?? ?? ?? ??

02 00 00 00

28 00 00 00

main.c:10

Stack frame - epilogue return address to
libc

saved ebp

answer

b

a

return address to
main

eax
2a 00 00 00

eip
main.c:10

start_mainStack frame - epilogue
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 cc

ebp
bf ff f6 d8

?? ?? ?? ??

02 00 00 00

28 00 00 00

return address to
libc

saved ebp

answer

b

a

eax
2a 00 00 00

start_mainStack frame - call
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 cc

ebp
bf ff f6 d8

2a 00 00 00

02 00 00 00

28 00 00 00

return address to
libc

saved ebp

answer

b

a

start_mainStack frame - epilogue
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 d8

ebp
bf ff f6 d8

return address to
libc

saved ebp

start_mainStack frame - epilogue
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

00 00 00 00

esp
bf ff f6 d8

ebp
00 00 00 00

return address to
libc

saved ebp

start_mainStack frame - epilogue
0xffffffff

0x00000000

int add(int a, int b)
{
 int result = a + b;
 return result;
}

int main()
{
 int answer;
 answer = add(40, 2);
 return 0;
}

esp
bf ff f6 d8

ebp
00 00 00 00

return address to
libc

Buffers on the stack
0xffffffff

0x00000000

int main(int argc, char** argv)

{

 int answer = 42;

 char answer_buf[8] = “answer”;

 return 0;

}

start_main

00 00 00 00

e r 00 ??

a n s w

2a 00 00 00

return address to
libc

saved ebp

answer

answer_buf

Buffers grow towards higher addresses.

References

http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Anatomy of a program in memory:

http://www.ibm.com/developerworks/library/l-kernel-memory-access/

User space memory access from the Linux kernel:

Let’s talk about:
● Bases of memory management for a single process

● Exemplary exploits: how-to

● LLVM tools that prevents some of software attacks

Exemplary exploits: how-to

Use Return Oriented Programming

Defend against attacks

Define safety

start_mainBuffer on the stack
0xffffffff

0x00000000

int foo(int a, int b)
{
 char buffer[4] = “ab”;
 return 42;
}

int main(int argc, char** argv)
{
 int answer;
 answer = add(40, 2);
 return 0;
}

return address to
libc

saved ebp 00 00 00 00

esp
bf ff f6 c0

ebp
bf ff f6 c4

?? ?? ?? ??answer

02 00 00 00b

28 00 00 00a

main.c:10
return address to

main

mainsaved ebp

a b 00 ??buffer

start_mainBuffer overflow
0xffffffff

0x00000000

int foo(int a, int b)
{
 char buffer[4] = “abcde”;
 return 42;
}

int main(int argc, char** argv)
{
 int answer;
 answer = add(40, 2);
 return 0;
}

return address to
libc

saved ebp 00 00 00 00

esp
bf ff f6 c0

ebp
bf ff f6 c4

?? ?? ?? ??answer

02 00 00 00b

28 00 00 00a

main.c:10
return address to

main

e 00 cd 08saved ebp

a b c dbuffer

Return oriented programming

Return oriented programming

an attacker uses his control over the stack

Return oriented programming

an attacker uses his control over the stack

right before the return from a function

Return oriented programming

an attacker uses his control over the stack

right before the return from a function

to direct code execution to some other location in the program

How critical are memory corruption bugs?
MITRE ranking [http://cwe.mitre.org/top25/]:

The 2011 CWE/SANS Top 25 Most Dangerous Software Errors is a list of the most widespread and critical

errors that can lead to serious vulnerabilities in software. They are often easy to find, and easy to exploit.

They are dangerous because they will frequently allow attackers to completely take over the

software, steal data, or prevent the software from working at all.

How critical are memory corruption bugs?
MITRE ranking [http://cwe.mitre.org/top25/]:

memory corruption bugs are considered
one of the top three most dangerous software errors

The 2011 CWE/SANS Top 25 Most Dangerous Software Errors is a list of the most widespread and critical

errors that can lead to serious vulnerabilities in software. They are often easy to find, and easy to exploit.

They are dangerous because they will frequently allow attackers to completely take over the

software, steal data, or prevent the software from working at all.

“Eternal War in Memory”
offensive researchdefensive research

new attacksnew protections

Exemplary exploits: how-to

Use Return Oriented Programming

Defend against attacks

Define safety

Data Execution Prevention

mark areas of memory as either "executable" or "non executable"

cat /proc/<PID>/maps

Let’s check:

The idea:

r-x code pages

rw- data pages (stack, heap)

(r|-)wx must never happen

Data Execution Prevention
cat /proc/<PID>/maps

00400000-00401000 r-xp 00000000 08:02 15075435 /home/i.rub/ROP/waiter
00600000-00601000 r--p 00000000 08:02 15075435 /home/i.rub/ROP/waiter
00601000-00602000 rw-p 00001000 08:02 15075435 /home/i.rub/ROP/waiter
01977000-019a9000 rw-p 00000000 00:00 0 [heap]
7ff302b76000-7ff302b8c000 r-xp 00000000 08:01 4214577 /lib/x86_64-linux-gnu/libgcc_s.so.1
7ff302b8c000-7ff302d8b000 ---p 00016000 08:01 4214577 /lib/x86_64-linux-gnu/libgcc_s.so.1
7ff302d8b000-7ff302d8c000 r--p 00015000 08:01 4214577 /lib/x86_64-linux-gnu/libgcc_s.so.1
...
7ff30398a000-7ff30398b000 rw-p 00000000 00:00 0
7fff65113000-7fff65135000 rw-p 00000000 00:00 0 [stack]
7fff6516a000-7fff6516c000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

We already know how to overcome this protection.

Address Space Layout Randomization

each process’ address space is randomized

so that stack, heap and libraries are mapped to some random address.

The idea:

Address Space Layout Randomization

each process’ address space is randomized

so that stack, heap and libraries are mapped to some random address.

The idea:

cat /proc/<PID>/maps

Let’s check:

ldd a.out

[vsyscall] is at a fixed address...

Address Space Layout Randomization

each process’ address space is randomized

so that stack, heap and libraries are mapped to some “random” address.

The idea:

cat /proc/<PID>/maps

Let’s check:

ldd a.out

[vsyscall] is at a fixed address...

How “random” was* ASLR?

secure_ip_id(x) is a PRF depending solely on argument x and the key, which changes every 5
minutes (not `every second’)

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf

* fixed in Linux 2.6.30

/*
 * Get a random word for internal kernel use only.[...]
 */
unsigned int get_random_int(void)
{
 /*
 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
 * every second, from the entropy pool (and thus creates a limited
 * drain on it), and uses halfMD4Transform within the second. We
 * also mix it with jiffies and the PID:
 */
 return secure_ip_id((__force __be32)(current->pid + jiffies));
}

How “random” was* ASLR?

within 5 minutes get_random_int() depends solely on (jiffies + pid)

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

* fixed in Linux 2.6.30

How “random” was* ASLR?

within 5 minutes get_random_int() depends solely on (jiffies + pid)

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

jiffies’ granularity is known (e.g. 4ms for Linux 2.6.13+, on Intel x86)

* fixed in Linux 2.6.30

How “random” was* ASLR?

within 5 minutes get_random_int() depends solely on (jiffies + pid)

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

We can recreate conditions to get exactly the same “random” value:

jiffies’ granularity is known (e.g. 4ms for Linux 2.6.13+, on Intel x86)

* fixed in Linux 2.6.30

How “random” was* ASLR?

within 5 minutes get_random_int() depends solely on (jiffies + pid)

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

We can recreate conditions to get exactly the same “random” value:

jiffies’ granularity is known (e.g. 4ms for Linux 2.6.13+, on Intel x86)

* fixed in Linux 2.6.30

jiffies pid

jiffies pid

How “random” was* ASLR?

within 5 minutes get_random_int() depends solely on (jiffies + pid)

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

Timeframe for attack: 32768 × 4ms = 131s = 2min 11s

We can recreate conditions to get exactly the same “random” value:

jiffies’ granularity is known (e.g. 4ms for Linux 2.6.13+, on Intel x86)

* fixed in Linux 2.6.30

jiffies pid

jiffies pid

How common is ASLR?
In order to benefit from ASLR protection an executable has to be compiled as
position independent executable (PIE).

http://securityetalii.es/2013/02/03/how-effective-is-aslr-on-linux-systems/

How common is ASLR?
In order to benefit from ASLR protection an executable has to be compiled as
position independent executable (PIE).

http://securityetalii.es/2013/02/03/how-effective-is-aslr-on-linux-systems/

Distribution all binaries PIE binaries not PIE binaries

Ubuntu 12.10 646 111 17% 535 83%

Debian 6 592 71 10% 531 90%

CentOS 6.3 1340 217 16% 1123 84%

A tool, Checksec, was applied to verify if binaries used security mechanisms:

Playing with ASLR at home

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Levels of randomization:

Setting temporary level of randomization:

0 No randomization Everything is static

1 Conservative randomization Shared libraries, stack, mmap(), VDSO
and heap are randomized

2 Full randomization Memory managed through brk() is
also randomized

Canaries

a canary in the coal mine

start_mainDanger detected!

int foo(int a, int b)
{
 char buffer[4] = “abcde”;
 return 42;
}

int main(int argc, char** argv)
{
 int answer;
 answer = add(40, 2);
 return 0;
}

return address to
libc

saved ebp 00 00 00 00

?? ?? ?? ??answer

02 00 00 00b

28 00 00 00a

main.c:10
return address to

main

e 00 cd 08saved ebp

a b c dbuffer

start_mainDanger detected!

int foo(int a, int b)
{
 char buffer[4] = “abcde”;
 return 42;
}

int main(int argc, char** argv)
{
 int answer;
 answer = add(40, 2);
 return 0;
}

return address to
libc

saved ebp 00 00 00 00

?? ?? ?? ??answer

02 00 00 00b

28 00 00 00a

main.c:10
return address to

main

e 00 cd 08saved ebp

a b c dbuffer

Random magic value is inserted next to saved ebp
and verified afterwards before registers update.

Let’s not overwrite the canary
If we are still able to overwrite local values...

pointer subterfuge

http://blogs.msdn.com/b/michael_howard/archive/2006/01/30/520200.aspx

Let’s not overwrite the canary
If we are still able to overwrite local values...

pointer subterfuge

void SomeFunc() {

 // do something

}

typedef void (*FUNC_PTR)(void);

http://blogs.msdn.com/b/michael_howard/archive/2006/01/30/520200.aspx

Let’s not overwrite the canary
If we are still able to overwrite local values...

pointer subterfuge

void SomeFunc() {

 // do something

}

typedef void (*FUNC_PTR)(void);

int DangerousFunc(char *szString) {

 char buf[32];

 strcpy(buf,szString);

 FUNC_PTR fp = (FUNC_PTR)(&SomeFunc);

 // Other code

 (*fp)();

 return 0;

}

http://blogs.msdn.com/b/michael_howard/archive/2006/01/30/520200.aspx

Let’s not overwrite the canary
If we are still able to overwrite local values...

pointer subterfuge

void SomeFunc() {

 // do something

}

typedef void (*FUNC_PTR)(void);

int DangerousFunc(char *szString) {

 char buf[32];

 strcpy(buf,szString);

 FUNC_PTR fp = (FUNC_PTR)(&SomeFunc);

 // Other code

 (*fp)();

 return 0;

}

http://blogs.msdn.com/b/michael_howard/archive/2006/01/30/520200.aspx

How to get around?

How to get around?
Overwriting the master-canary?

It is stored at a static location. If there is no ASLR.

How to get around?
Overwriting the master-canary?

It is stored at a static location. If there is no ASLR.

Guessing the canary value?

If people care for performance rather than security - yes.

How to get around?
Overwriting the master-canary?

It is stored at a static location. If there is no ASLR.

Guessing the canary value?

If people care for performance rather than security - yes.

ENABLE_STACKGUARD_RANDOMIZE is actually off on most architectures,
canary defaults to 0xff0a000000000000.

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

Offense-defense summary

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

DEP easy

ASLR feasible

canaries depends*

DEP + ASLR feasible

DEP + canaries depends*

ASLR + canaries hard

DEP + ASLR + canaries hard

 *depends on environmental factors or certain code flaws

How common are memory corruption bugs?
Pwn2Own 2012:

Google Chrome sandbox exploited for the first time!

http://www.zdnet.com/article/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/

VUPEN team used a pair of zero-day vulnerabilities to take complete control of a fully patched 64-bit
Windows 7.

How common are memory corruption bugs?
Pwn2Own 2012:

Google Chrome sandbox exploited for the first time!

http://www.zdnet.com/article/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/

VUPEN team used a pair of zero-day vulnerabilities to take complete control of a fully patched 64-bit
Windows 7.

Pwnium 2012:

Sergey Glazunov and “PinkiePie” each prepared exploits for Chrome.

Google issued a fix to Chrome users in less than 24 hours after the Pwnium exploits were
demonstrated.

How VUPEN owned the system?

http://www.zdnet.com/article/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/

We had to use two vulnerabilities. The first one was to bypass DEP and ASLR on Windows and a second
one to break out of the Chrome sandbox.

Chaouki Bekrar (VUPEN co-founder)

How VUPEN owned the system?

http://www.zdnet.com/article/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/

We had to use two vulnerabilities. The first one was to bypass DEP and ASLR on Windows and a second
one to break out of the Chrome sandbox.

It was a use-after-free vulnerability in the default installation of Chrome.

Chaouki Bekrar (VUPEN co-founder)

How VUPEN owned the system?

http://www.zdnet.com/article/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/

This just shows that any browser, or any software, can be hacked if there is enough motivation and
skill.

We had to use two vulnerabilities. The first one was to bypass DEP and ASLR on Windows and a second
one to break out of the Chrome sandbox.

It was a use-after-free vulnerability in the default installation of Chrome.

Chaouki Bekrar (VUPEN co-founder)

References

http://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

SoK: Eternal War in Memory:
L.Szekeres (Stony Brook University), M.Payer (University of California, Berkeley), T.Wei (Peking
University), D.Song, (University of California, Berkeley), 2103

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf

Stack Smashing as of Today:
A State-of-the-Art Overview on Buffer Overflow Protections on linux_x86_64
Hagen Fritsch, Technische Universität München, Black Hat Europe – Amsterdam, 2009

Exemplary exploits: how-to

Use Return Oriented Programming

Defend against attacks

Define safety

When is our software safe?

...claim that a program is resistant to software attacks?

Is it possible to...

...create applications in a safe language?

...enforce safety in case of C/C++?

When is our software safe?

...claim that a program is resistant to software attacks?

Is it possible to...

...create applications in a safe language?

...enforce safety in case of C/C++?

When is our software safe?

...claim that a program is resistant to software attacks?

Is it possible to...

...create applications in a safe language?

...enforce safety in case of C/C++?

Memory safety
all possible executions are memory safe

Memory safety
all possible executions are memory safe

a program is memory safe

Memory safety
all possible executions are memory safe

a program is memory safe

all possible programs are memory safe

Memory safety
all possible executions are memory safe

a program is memory safe

all possible programs are memory safe

a programming language is memory safe

Memory-safe execution
Intuitively, it means that none of these bad things happen:

Memory-safe execution
Intuitively, it means that none of these bad things happen:

null pointer dereference

use of uninitialized memory

Memory-safe execution
Intuitively, it means that none of these bad things happen:

null pointer dereference

use after free

use of uninitialized memory

illegal free (of an already-freed pointer, or a non-malloced pointer)

Memory-safe execution
Intuitively, it means that none of these bad things happen:

buffer overflow

null pointer dereference

use after free

use of uninitialized memory

illegal free (of an already-freed pointer, or a non-malloced pointer)

Memory-safe execution
Defined memory:

Memory-safe execution
Defined memory:

allocated on the heap (malloc)

Memory-safe execution
Defined memory:

allocated on the heap (malloc)

allocated on the stack (local variables, function parameters)

Memory-safe execution
Defined memory:

allocated on the heap (malloc)

global variables in static data area

allocated on the stack (local variables, function parameters)

Memory-safe execution
Defined memory:

allocated on the heap (malloc)

global variables in static data area

allocated on the stack (local variables, function parameters)

In a memory-safe execution undefined memory cannot be accessed.

Memory-safe execution
Intuitively, it means that none of these bad things happen:

buffer overflow

null pointer dereference

use after free

use of uninitialized memory

illegal free (of an already-freed pointer, or a non-malloced pointer)

Memory-safe execution
Intuitively, it means that none of these bad things happen:

buffer overflow

null pointer dereference

use after free

use of uninitialized memory

illegal free (of an already-freed pointer, or a non-malloced pointer)

Memory-safe execution
Intuitively, it means that none of these bad things happen:

buffer overflow

null pointer dereference

use after free

use of uninitialized memory

illegal free (of an already-freed pointer, or a non-malloced pointer)

Memory-safe execution
Intuitively, it means that none of these bad things happen:

buffer overflow

null pointer dereference

use after free

use of uninitialized memory

illegal free (of an already-freed pointer, or a non-malloced pointer)

Memory-safe execution
Intuitively, it means that none of these bad things happen:

buffer overflow

null pointer dereference

use after free

use of uninitialized memory

illegal free (of an already-freed pointer, or a non-malloced pointer)

Memory-safe execution

int x;

int buf[4];

buf[4] = 3; /* overwrites x */

Still there is a problem with buffer overflow:

Memory-safe execution

int x;

int buf[4];

buf[4] = 3; /* overwrites x */

Still there is a problem with buffer overflow:

Let’s add to the definition: infinite spacing.

We assume that memory regions are allocated infinitely far apart.

Memory-safe execution

struct foo {

 int buf[4];

 int x;

};

struct foo *pf = malloc(sizeof(struct foo));

pf->buf[4] = 3; /* overwrites pf->x */

Still there is a problem with buffer overflow:

Memory-safe execution

struct foo {

 int buf[4];

 int x;

};

struct foo *pf = malloc(sizeof(struct foo));

pf->buf[4] = 3; /* overwrites pf->x */

Still there is a problem with buffer overflow:

Should we assume infinite spacing between structure fields?

Better not.

Fat pointers ensure spatial safety

Each pointer consists of three elements: (p, b, e).

char *pc = “espresso”;

pc += 3;

e s p r e s s o

p b e

\0

How to enforce memory safety?

DieHard:
Probabilistic Memory Safety for Unsafe Languages
https://people.cs.umass.edu/~emery/pubs/fp014-berger.pdf

SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C
http://llvm.org/pubs/2009-06-PLDI-SoftBound.pdf

HardBound:
Architectural Support for Spatial Safety of the C Programming Language
http://www.cis.upenn.edu/acg/papers/asplos08_hardbound.pdf

Type safety

“Well typed programs cannot go wrong.”

 A Theory of Type Polymorphism in Programming: Robin Milner, 1978

Syntax vs. semantics

“Colorless green ideals sleep furiously.”

{
 char buf[4];
 buf[4] = ‘x’;
}

Type-safe language

In a type-safe language:

the language’s type system ensures that
syntactically correct programs are well defined.

Java, C#

Python, Ruby

Examples:

Extensions to type systems

if (p) x = 5;
 else x = "hello";
if (p) return x + 5;
 else return strlen(x);

Some programs are well defined but incorrect in a given type system:

Extensions to type systems

if (p) x = 5;
 else x = "hello";
if (p) return x + 5;
 else return strlen(x);

Some programs are well defined but incorrect in a given type system:

Types could carry much more information expressed as invariants:

{v: int | 0 <= v}

{v: int | v % 2}

References

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

What is memory safety?
The Programming Languages Enthusiast, July 2014

http://www.pl-enthusiast.net/2014/08/05/type-safety/

What is type safety?
The Programming Languages Enthusiast, August 2014

Let’s talk about:
● Bases of memory management for a single process

● Exemplary exploits (Return Oriented Programming)

● LLVM tools that prevents some of software attacks

LLVM tools

Why LLVM?

Sanitizers

Work in progress

How did it start?
Low Level Virtual Machine project starts in 2000 at the University of Illinois

How did it start?
Low Level Virtual Machine project starts in 2000 at the University of Illinois

The main concept includes:

a modular architecture

LLVM architecture
LLVM was designed as a set of reusable libraries with well-defined interfaces.

C/C++ Front-end

AST
(Abstract Syntax Tree)

IR

LLVM architecture
LLVM was designed as a set of reusable libraries with well-defined interfaces.

C/C++ Front-end

AST
(Abstract Syntax Tree)

IR Pass Pass... IR

optimizations:
language and architecture independent

LLVM architecture
LLVM was designed as a set of reusable libraries with well-defined interfaces.

C/C++ Front-end

AST
(Abstract Syntax Tree)

IR Pass Pass... IR Back-end machine
code

optimizations:
language and architecture independent

How did it start?
Low Level Virtual Machine project starts in 2000 at the University of Illinois

The main concept includes:

a modular architecture

an intermediary code representation: IR

SSA form

How did it start?
Low Level Virtual Machine project starts in 2000 at the University of Illinois

The main concept includes:

a modular architecture

an intermediary code representation: IR

SSA form

Purpose:

a `hackable and hacking’ compiler

Who uses LLVM and why?
LLVM is heavily used in both academia and industry

especially: in work targeted at high-performance computing

Who uses LLVM and why?
LLVM is heavily used in both academia and industry

especially: in work targeted at high-performance computing

Portable Computing Language (pocl):
an open source implementation of the OpenCL

Who uses LLVM and why?
LLVM is heavily used in both academia and industry

especially: in work targeted at high-performance computing

Apple Inc.

Portable Computing Language (pocl):
an open source implementation of the OpenCL

Adobe

Who uses LLVM and why?
LLVM is heavily used in both academia and industry

especially: in work targeted at high-performance computing

Apple Inc.

Portable Computing Language (pocl):
an open source implementation of the OpenCL

Adobe

PNaCl

...

PNaCl for Chrome
PNaCl introduces a twist in the toolchain: instead of compiling C/C++ applications for each of the
hardware platforms targeted, developers now need to generate a single LLVM bitcode which is them
loaded by any Chrome client and translated to native code, validated and executed locally.

http://www.infoq.com/news/2013/05/pnacl-google-chrome-llvm

SERVER

BITCODE

CLIENT

BITCODE

NaCl
sandbox

NACLEXE

NaCl
sandbox

PNaCl for Chrome
PNaCl introduces a twist in the toolchain: instead of compiling C/C++ applications for each of the
hardware platforms targeted, developers now need to generate a single LLVM bitcode which is them
loaded by any Chrome client and translated to native code, validated and executed locally.

http://www.infoq.com/news/2013/05/pnacl-google-chrome-llvm

SERVER

BITCODE

CLIENT

BITCODE

NaCl
sandbox

NACLEXE

NaCl
sandbox

1. request
bitcode

PNaCl for Chrome
PNaCl introduces a twist in the toolchain: instead of compiling C/C++ applications for each of the
hardware platforms targeted, developers now need to generate a single LLVM bitcode which is them
loaded by any Chrome client and translated to native code, validated and executed locally.

http://www.infoq.com/news/2013/05/pnacl-google-chrome-llvm

SERVER

BITCODE

CLIENT

BITCODE

NaCl
sandbox

NACLEXE

NaCl
sandbox

1. request
bitcode

2. return
bitcode

PNaCl for Chrome
PNaCl introduces a twist in the toolchain: instead of compiling C/C++ applications for each of the
hardware platforms targeted, developers now need to generate a single LLVM bitcode which is them
loaded by any Chrome client and translated to native code, validated and executed locally.

http://www.infoq.com/news/2013/05/pnacl-google-chrome-llvm

SERVER

BITCODE

CLIENT

BITCODE

NaCl
sandbox

NACLEXE

NaCl
sandbox

3. translation
(llc/ld)

1. request
bitcode

2. return
bitcode

PNaCl for Chrome
PNaCl introduces a twist in the toolchain: instead of compiling C/C++ applications for each of the
hardware platforms targeted, developers now need to generate a single LLVM bitcode which is them
loaded by any Chrome client and translated to native code, validated and executed locally.

http://www.infoq.com/news/2013/05/pnacl-google-chrome-llvm

SERVER

BITCODE

CLIENT

BITCODE

NaCl
sandbox

NACLEXE

NaCl
sandbox

3. translation
(llc/ld)

4. validation &
execution

1. request
bitcode

2. return
bitcode

Where is LLVM going?
Low Level Virtual Machine project starts in 2000 at the University of Illinois

the umbrella project that includes a variety of
compiler and low-level tool technologies

Where is LLVM going?
Low Level Virtual Machine project starts in 2000 at the University of Illinois

the umbrella project that includes a variety of
compiler and low-level tool technologies

LLVM core (an optimizer and a code generator)

clang - a C/C++ compiler

OpenMP, polly, klee...

LLVM tools

Why LLVM?

Sanitizers

Work in progress

MemorySanitizer - MSan
is a detector of uninitialized reads that affect program execution

compiler
instrumentation

module
(a LLVM pass)

run-time library

%clang -fsanitize=memory -fPIE -pie -fno-omit-frame-pointer -g -O1 ex.cc

MemorySanitizer in action
#include <stdio.h>

int main(int argc, char** argv) {

 int* a = new int[10];

 a[2] = 2;

 printf("ARGC: %d\n", argc);

 int b = a[argc];

 if (b)

printf("HERE\n");

 return 0;

}

MSAN_SYMBOLIZER_PATH=$(which llvm-symbolizer-3.4) ./a.out

ARGC: 1
==4312== WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0x7f1e6d703d21 in main (/home/i.rub/ROP/MSAN/a.out+0x73d21)
#1 0x7f1e6c272ec4 (/lib/x86_64-linux-gnu/libc.so.6+0x21ec4)
#2 0x7f1e6d7039dc in _start (/home/i.rub/ROP/MSAN/a.
out+0x739dc)

SUMMARY: MemorySanitizer: use-of-uninitialized-value ??:0 main
Exiting

MemorySanitizer - the idea

shadow memory

application bit

1

0

is uninitialized

is initialized

poisoned bit

clean bit

Shadow memory in Memcheck

application
8 bits

0: all ok

1: all poisoned

2: not addressable

3: partially poisoned

shadow memory

secondary
1:1 shadow

1 1

0 0

1 0

0 1

Shadow memory in Memcheck
Motivation:

slower

But still, the Valgrind tool is:

prone to racy updates on multiprocessor machines

Partially defined bytes are rarely involved in more than 0.1% of memory accesses,
and are not present at all in many programs.
How to Shadow Every Byte of Memory Used by a Program, Nicholas Nethercote, Julian Seward

Direct 1:1 shadow mapping in MSan

shadow = addr - 0x400000000000

Application
0x7fffffffffff
0x600000000000

clean bit

Protected
0x5fffffffffff
0x400000000000

Protected
0x1fffffffffff
0x000000000000

Shadow
0x3fffffffffff
0x200000000000

When to report errors?

struct foo {

 char x;

 // 3-byte padding

 int y;

};

Also, it is OK to copy uninitialized data round.

We do not want to report every load of uninitialized data:

Calculations on such data are OK too, as long as the result is discarded.

UMR are reported in case of: branches, syscalls, pointer dereferences.

Shadow propagation
Shadow memory is assigned to every value from the very beginning.

const

malloc

stack allocations

1

1

0

?

?

?

Shadow is unpoisoned when constants are stored.

memory
writes

arithmetic
operations

Shadow propagation
How to pass shadow information through expressions?

Let A be a value and A'- the shadow.

A = op B, C

= op' B, C, B', C'A'

For each op we have to define op':

Shadow propagation

A = B xor C: A' = B' | C'

How to pass shadow information through expressions?

Let A be a value and A'- the shadow.

A = op B, C

= op' B, C, B', C'A'

For each op we have to define op':

Example:

A = B & C: A' = (B' & C') | (B & C') | (B' & C)

Difficulties
It is not always possible to efficiently implement op'.

0 1 0 1

0 0 1 1
+

(5)

(3)

0 1 0 1

0 0 1 0
+

(5)

(2)

Difficulties
It is not always possible to efficiently implement op'.

0 1 0 1

0 0 1 1
+

1 0 0 0

(5)

(3)

(8)

0 1 0 1

0 0 1 0
+

(5)

(2)

Difficulties
It is not always possible to efficiently implement op'.

0 1 0 1

0 0 1 1
+

1 0 0 0

(5)

(3)

(8)

0 1 0 1

0 0 1 0
+

0 1 1 1

(5)

(2)

(7)

Difficulties
It is not always possible to efficiently implement op'.

Often, an approximated propagation of shadow is used.

A = B + C: A' = B' | C'

0 1 0 1

0 0 1 1
+

1 0 0 0

(5)

(3)

(8)

0 1 0 1

0 0 1 0
+

0 1 1 1

(5)

(2)

(7)

Difficulties
MSan is one of last passes - it operates on a strongly optimized IR.

struct S {

 int a : 3;

 int b : 5;

};

bool f(S *s) { return s->b; }

Difficulties
MSan is one of last passes - it operates on a strongly optimized IR.

struct S {

 int a : 3;

 int b : 5;

};

*(unsigned char *)s > 7bool f(S *s) { return s->b; }

Difficulties
MSan is one of last passes - it operates on a strongly optimized IR.

struct S {

 int a : 3;

 int b : 5;

};

*(unsigned char *)s > 7bool f(S *s) { return s->b; }

If all relational comparisons are instrumented correctly then benchmarks
show slowdown of up to 50%.

Difficulties
Missing any write instruction causes false reports.

ALL stores in the program must be monitored, including stores in libc,
libstdc++, syscalls...

Solutions:

wrappers for common libc functions

recompiled and instrumented libc, libc++

DynamoRIO (MSanDr tool) - for binary instrumentation

Difficulties
Where was the poisoned memory allocated?

Is a guilty or b?

a = malloc(…);

…

b = malloc(…);

…
c = *a + *b;

if (c) … // reported error

Origin tracking
We have to allocate additional 4 bytes to keep the origin ID.

Additional slowdown: 2x (total: 6x)

RAM: 3x + malloc stack traces

Origin tracking
We have to allocate additional 4 bytes to keep the origin ID.

Additional slowdown: 2x (total: 6x)

RAM: 3x + malloc stack traces

A = op B, C, D

A'' = (D') ? (D'') : (C' ? C'' : B'')

Example:

Let A be a value, A'- the shadow, A'' - the origin.

Direct 1:1 shadow mapping

shadow = addr - 0x400000000000

Application
0x7fffffffffff
0x600000000000

clean bit

Origin
0x5fffffffffff
0x400000000000

Protected
0x1fffffffffff
0x000000000000

Shadow
0x3fffffffffff
0x200000000000

origin = addr - 0x200000000000

secondary
shadow

Advanced origin tracking
In this mode MSan prints stack traces of all memory stores along the path:

from the allocation the use of the uninitialized value.

Advanced origin tracking
In this mode MSan prints stack traces of all memory stores along the path:

from the allocation the use of the uninitialized value.

Origin ID is a descriptor of a sequence of undefined stores starting with its
creation.

There is a hash map of origin IDs (each store operation has its entry):

(previous origin ID, stack trace) new origin ID

Advanced origin tracking
In this mode MSan prints stack traces of all memory stores along the path:

from the allocation the use of the uninitialized value.

Origin ID is a descriptor of a sequence of undefined stores starting with its
creation.

There is a hash map of origin IDs (each store operation has its entry):

(previous origin ID, stack trace) new origin ID

But: some limits for the size of the tracked history have to be set.

Advanced origin tracking
B = store A

B'' = look up the value of
(A'', current stack trace)

in the hash map

Advanced origin tracking
B = store A

B'' = look up the value of
(A'', current stack trace)

in the hash map

if (B'')

return B''YES

Advanced origin tracking
B = store A

B'' = computeID(A'',
current stack trace)

B'' = look up the value of
(A'', current stack trace)

in the hash map

if (B'')

return B''

NO

YES

Advanced origin tracking
B = store A

B'' = computeID(A'',
current stack trace)

insert (B'', (A'', current
stack trace)) into the hash

map

B'' = look up the value of
(A'', current stack trace)

in the hash map

if (B'')

return B''

NO

YES

Is MSan superior over Memcheck?
Is compiler instrumentation superior over binary instrumentation?

IR carries more information, thus:

Is MSan superior over Memcheck?
Is compiler instrumentation superior over binary instrumentation?

IR carries more information, thus:

faster instrumentation

Is MSan superior over Memcheck?
Is compiler instrumentation superior over binary instrumentation?

IR carries more information, thus:

less false positives (e.g. in case of lazy computations)

faster instrumentation

Is MSan superior over Memcheck?
Is compiler instrumentation superior over binary instrumentation?

IR carries more information, thus:

less false positives (e.g. in case of lazy computations)

faster instrumentation

all the names of local variables are known

Is MSan superior over Memcheck?
Used for: Chrome, LLVM

Is MSan superior over Memcheck?

proprietary console app, 1.3 MLOC in C++

Used for: Chrome, LLVM

Example:

20+ unique bugs in < 2 hours the same bugs in 24+ hours

better reports for stack memory

Memory Sanitizer Memcheck

Benchmarks

Performance comparison with state-of-the-art tools (SPEC-2006)

Benchmarks

Application startup time (ms) comparison

MemorySanitizer - features
is bit-exact

is significantly faster than Memcheck

supports Linux x86_64 only, ASLR has to be turned on

requires that all program code is instrumented

causes 3x slowdown, uses 2x more real memory

able to track origins

References

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43308.pdf

http://llvm.org/devmtg/2013-04/stepanov-slides.pdf

MemorySanitizer:
Evgeniy Stepanov (Google), Kostya Serebryany (Google), 2013

MemorySanitizer: fast detector of uninitialized memory use in C++:
Evgeniy Stepanov (Google), Kostya Serebryany (Google)

http://valgrind.org/docs/shadow-memory2007.pdf

How to Shadow Every Byte of Memory Used by a Program:
Nicholas Nethercote (National ICT Australia), Julian Seward (Open Works LLP), 2007

AddressSanitizer - ASan
is a detector of memory errors:

AddressSanitizer - ASan
is a detector of memory errors:

use after free (dangling pointer dereference)

use after return

stack buffer overflow

AddressSanitizer - ASan
is a detector of memory errors:

global buffer overflow

heap buffer overflow

use after free (dangling pointer dereference)

use after return

stack buffer overflow

AddressSanitizer - ASan
is a detector of memory errors:

global buffer overflow

heap buffer overflow

use after free (dangling pointer dereference)

use after return

initialization order bugs

AddressSanitizer - ASan

compiler
instrumentation

module
(a LLVM pass)

run-time library
(replaces

malloc and free)

%clang -fsanitize=address -fPIE -pie -fno-omit-frame-pointer -g -O1 ex.cc

The tool works on x86 Linux and Mac, and ARM Android.

AddressSanitizer - the idea
The memory around malloc-ed regions (red zones) is poisoned.

...

of malloc-ed region

red zone red zone

shadow memory

AddressSanitizer - the idea
The free-ed memory is poisoned and put in quarantine:

...

of free-ed region

red zone red zone

shadow memory

this chunk will not be returned again by malloc in the nearest future.

Shadow memory in ASan
shadow byte8 bytes of application memory

0

5

7

-1

1

2

3

4

6

malloc returns 8-byte aligned
chunks of memory: a tail may
be addressable only partially.

Shadow memory in ASan
shadow byte8 bytes of application memory

0

5

7

-1

1

2

3

4

6

malloc returns 8-byte aligned
chunks of memory: a tail may
be addressable only partially.

A chunk’s state informs how
many of first bytes are
addressable.

Shadow memory in ASan
shadow byte8 bytes of application memory

0

5

7

-1

1

2

3

4

6

A chunk’s state informs how
many of first bytes are
addressable.

Every aligned 8-byte word of
memory has only 9 states.

malloc returns 8-byte aligned
chunks of memory: a tail may
be addressable only partially.

Shadow mapping in ASan (32 bit)

shadow = (addr >> 3) + 0x20000000

HighMem
0xffffffff
0x40000000

High Shadow
0x3fffffff
0x28000000

Low Mem
0x1fffffff
0x00000000

Low Shadow
0x23ffffff
0x20000000

Shadow Gap
0x27ffffff
0x24000000

AddressSanitizer - the idea
Every memory access in the program is transformed by the compiler:

*address = …; // or: … = *address

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
}

AddressSanitizer - the idea
Every memory access in the program is transformed by the compiler:

*address = …; // or: … = *address

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
}

IsPoisoned needs to:
access shadow memory for a given address

and verify its state

AddressSanitizer - the idea
Every memory access in the program is transformed by the compiler:

*address = …; // or: … = *address

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
}

IsPoisoned needs to:
access shadow memory for a given address

and verify its state

FAST.

Instrumentation: IsPoisoned
byte *shadow_address = MemToShadow(address);

byte shadow_value = *shadow_address;

if (shadow_value) {

 if (SlowPathCheck(shadow_value, address, kAccessSize)) {

 ReportError(address, kAccessSize, kIsWrite);

 }

}

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm

Instrumentation: IsPoisoned
byte *shadow_address = MemToShadow(address);

byte shadow_value = *shadow_address;

if (shadow_value) {

 if (SlowPathCheck(shadow_value, address, kAccessSize)) {

 ReportError(address, kAccessSize, kIsWrite);

 }

}

MemToShadow for shadow
memory returns

unaddressable shadow gap.

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm

Instrumentation: IsPoisoned

// Check the cases where we access first k bytes of the qword

// and these k bytes are unpoisoned.

bool SlowPathCheck(shadow_value, address, kAccessSize) {

 last_accessed_byte = (address & 7) + kAccessSize - 1;

 return (last_accessed_byte >= shadow_value);

}

byte *shadow_address = MemToShadow(address);

byte shadow_value = *shadow_address;

if (shadow_value) {

 if (SlowPathCheck(shadow_value, address, kAccessSize)) {

 ReportError(address, kAccessSize, kIsWrite);

 }

}

MemToShadow for shadow
memory returns

unaddressable shadow gap.

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm

How to detect stack buffer overflow?

void foo() {

 char a[8];

 …

 return;

}

 char redzone1[32]; // 32-byte aligned

 char redzone2[24]; // 32-byte aligned

 char redzone3[32]; // 32-byte aligned

 int *shadow_base = MemToShadow(redzone1);

 shadow_base[0] = 0xffffffff; // poison redzone1

 shadow_base[1] = 0xffffff00; // poison redzone2, unpoison 'a'

 shadow_base[2] = 0xffffffff; // poison redzone3

 // unpoison all

 shadow_base[0] = shadow_base[1] = shadow_base[2] = 0;

void foo() {

 …

 return;

}

 char a[8];

When AddressSanitizer finds a bug:

it calls one of the functions:
__asan_report_{load, store}{1, 2, 4, 8, 16}

__asan_report_error

When AddressSanitizer finds a bug:

it calls one of the functions:
__asan_report_{load, store}{1, 2, 4, 8, 16}

__asan_report_error

set breakpoint on __asan_report_error
So if you want gdb to stop before ASan report an error:

ASan with gdb

https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger

set breakpoint on __asan_report_error
To stop gdb before ASan report an error:

ASan with gdb

https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger

To stop gdb after ASan has reported an error:

set breakpoint on AsanDie

set breakpoint on __asan_report_error
To stop gdb before ASan report an error:

ASan with gdb

https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger

To see information on a memory location:

To stop gdb after ASan has reported an error:

set breakpoint on AsanDie

(gdb) set overload-resolution off

(gdb) p __asan_describe_address(0x7ffff73c3f80)

set breakpoint on __asan_report_error
To stop gdb before ASan report an error:

Good news
There is no need to recompile shared libraries:

ASan will work even if you rebuild just part of your program!

Good news
There is no need to recompile shared libraries:

ASan will work even if you rebuild just part of your program!

AddressSanitizer is not expected to produce false positives:

if you see one, look again - most likely it is a true positive!

Good news
There is no need to recompile shared libraries:

ASan will work even if you rebuild just part of your program!

AddressSanitizer is not expected to produce false positives:

if you see one, look again - most likely it is a true positive!

Real-life performance is great:

Almost no slowdown for GUI programs!
Typical overall memory overhead is 2x - 4x!

Benchmarks

The average slowdown on 64-bit Linux (SPEC-2006)

Difficulties
There are very few optimizations implemented.

Because of specific dataflow some address checks are redundant.

Difficulties
There are very few optimizations implemented.

Because of specific dataflow some address checks are redundant.

Some false negatives can occur.

With compacted mapping ASan does not catch unaligned partially out-of-
bound accesses:

Difficulties
There are very few optimizations implemented.

Because of specific dataflow some address checks are redundant.

Some false negatives can occur.

With compacted mapping ASan does not catch unaligned partially out-of-
bound accesses:

int *x = new int[2]; // 8 bytes: [0,7]

int *u = (int*)((char*)x + 6);

*u = 1; // Access to range [6-9]

Is ASan superior over Memcheck?
 Valgrind AddressSanitizer

Heap out-of-bounds YES YES

Stack out-of-bounds NO YES

Global out-of-bounds NO YES

Use-after-free YES YES

Use-after-return NO Sometimes/YES

Uninitialized reads YES NO

Overhead 10x-30x 1.5x-3x

ASan in use
The tool has been applied Chromium with WebKit.

In first 10 months of using ASan detected:

heap-use-after-free 201

heap-buffer-overflow 73

global-buffer-overflow 8

stack-buffer-overflow 7

References

http://llvm.org/devmtg/2011-11/Serebryany_FindingRacesMemoryErrors.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf

AddressSanitizer: A Fast Address Sanity Checker:
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, Dmitry Vyukov (Google), 2012

Finding races and memory errors with LLVM instrumentation:
Timur Iskhodzhanov, Alexander Potapenko, Alexey Samsonov, Kostya Serebryany, Evgeniy
Stepanov, Dmitriy Vyukov (Google), 2011

https://www.youtube.com/watch?v=CPnRS1nv3_s

Finding races and memory errors with LLVM instrumentation:
Konstantin Serebryany (Google), 2011

LLVM tools

Why LLVM?

Sanitizers

Work in progress

Goals of SAFECode project
How to enforce memory safety?

Traditional approach:
runtime checks and garbage collection

Goals of SAFECode project
How to enforce memory safety?

The SAFEcode approach:

Traditional approach:
runtime checks and garbage collection

100% static enforcement of memory safety

Goals of SAFECode project
How to enforce memory safety?

programmer annotations, runtime checks, garbage collection

supposed to work for a large subclass of type-safe C programs

SAFECode compiler
Built using the LLVM Compiler Infrastructure and the Clang compiler driver.

SAFECode is implemented as a set of LLVM analysis and transform passes.

SAFECode compiler
Built using the LLVM Compiler Infrastructure and the Clang compiler driver.

A memory safety compiler: inserts runtime checks into a program to catch
memory safety errors at runtime.

SAFECode is implemented as a set of LLVM analysis and transform passes.

SAFECode compiler
Built using the LLVM Compiler Infrastructure and the Clang compiler driver.

A memory safety compiler: inserts runtime checks into a program to catch
memory safety errors at runtime.

With additional instrumentation it can track debugging information.

SAFECode is implemented as a set of LLVM analysis and transform passes.

SAFECode compiler
Built using the LLVM Compiler Infrastructure and the Clang compiler driver.

A memory safety compiler: inserts runtime checks into a program to catch
memory safety errors at runtime.

With additional instrumentation it can track debugging information.

SAFECode is implemented as a set of LLVM analysis and transform passes.

Work in progress…?

ThreadSanitizer (tsan)
is a data race detector for C/C++ programs

ThreadSanitizer (tsan)
is a data race detector for C/C++ programs

Linux and Mac versions are based on Valgrind framework

ThreadSanitizer (tsan)
is a data race detector for C/C++ programs

What makes tsan better than Helgrind?

It provides a hybrid mode, which may give more false positives, but is much
faster, more predictable and find more real races.

Linux and Mac versions are based on Valgrind framework

https://code.google.com/p/data-race-test/wiki/ThreadSanitizerVsOthers

https://code.google.com/p/data-race-test/wiki/ThreadSanitizerVsOthers

“Eternal War in Memory”
offensive researchdefensive research

new attacksnew protections

“Eternal War in Memory”
offensive researchdefensive research

new attacksnew protections

Mobile System Software Group

Inga Rüb (inga.roksana.rueb@gmail.com)

Pictures:

https://upload.wikimedia.org/wikipedia/commons/9/9a/Hohenfriedeberg_-
_Attack_of_Prussian_Infantry_-_1745.jpg

http://llvm.org/img/DragonFull.png

(www.theguardian.com)

http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2010/4/1/1270144400739/Robin-
Milner-001.jpg

http://www.academia.dk/Blog/wp-content/uploads/CanaryInACoalMine_2.jpg

