UNDEFINED BEHAVIOR IS
AWESOME

Piotr Padlewski

piotr.padlewski@gmail.com, @PiotrPadlewski

mailto:piotr.padlewski@gmail.com

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

ABOUT MYSELF

» Currently working in llIT developing C++ tooling like clang-tidy and
studying on University of Warsaw.

» Worked on optimizations in clang and LLVM - devirtualization and
ThinLTO at Google

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

IMPLEMENTATION DEFINED BEHAVIOUR (1B)

» The behavior of the program varies between implementations, and the
conforming implementation must document the effects of each
behavior.

» Examples:
» Type of std::size_t
» Number of bits in long

» Number of bits in a byte

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

UNSPECIFIED BEHAVIOR

» The behavior of the program varies between implementations and the
conforming implementation is not required to document the effects of
each behavior.[0]

» Examples:
» Order of evaluation: foo(bar(), baz()):

» Identical string literals address: “too” == “foo”

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

UNDEFINED BEHAVIOR (UB)

» There are no restrictions on the behavior of the program.

» We can treat it as a promise to the compiler that something won't
happen.

WHAIT CAN HAPPEN
AFTER HITTING UB?

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

UNDEFINED BEHAVIOR (UB)

» In theory your program can do anything

»in practice the odds of formatting your hard drive are

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BORING UBS

» Naming variable starting with underscore
» Detining functions in namespace std

» Specializing non-user defined types in namespace std (can’t specialize
std::hash<std::pair<int, int>>)

» Calling delete/free after new(]

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

MORE INTERESTING UBS

» Dereferencing nullptr
» Using uninitialized values

» Integers overflows

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

SIMPLE OVERFLOW

int foo(int x) {
return x+1 > X

int foo(int) {
return true;

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LOOPS

for (int 1 = 0; 1 < n; 1+=2) {
A[1] = B[1] + C[1];
A[i+1] = B[i+1l] + C[i+17];
h

» Loop will terminate
» assert(n >=i);

» safe to wider i to uinté4 t

= VECTORIZATION AND UNROLLING

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

TASTY UBS

» buffer overflow
» using pointer to object of ended lifetime
» violating strict-aliasing

» const_casting const

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists 1n table(int v)

{

A

for (int 1 = 0; 1
if (table[1] =
return true;

= 4; 1++) {
V)

}

return false;

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists 1n table(int v)

{

A

for (int 1 = 0; 1 <= 4; 1++) {
if (table[1] == V)

return true;

}

return false;

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists 1n table(int v)

{

A

for (int 1 = 0; 1 <= 4; 1++) {
1if (table[1] == V)

return true;

}

return false;

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists 1n table(int v)

{

return true;

}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LIFETIME AND POINTERS

int main() {

' (int*)malloc(sizeof(int));
(int*)realloc(p, sizeof(int));
q) A

printf("%d %d\n", *p, *q);

Compiled with clang produce: 1 2

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LIFETIME AND POINTERS
vector<int> v; 1S THIS VALID?

v.reserve(’Z);
v.push back(%); 1S THIS UB/IB?
V.push back(2);

auto& ref = v[0];
v.push back(42);

valid, because std::allocator
only calls new/delete

if (&v[0] == &ref)
ref = 42;

WHEN SOMETHING IS GOOD
CANDIDAIE TO BE UB?

When occurred situation is considered a bug and defining it's behavior
would be a performance loss.

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

STACK OVERFLOW

» Why | can’t get a nice error message saying | got stack overflow?

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

OUT OF MEMORY

» Ok, at least we get std::bad_alloc or nullptr when heap allocation fails.

N\

- -

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

WHY PEOPLE HATE EXCEPTIONS

» With enabled exceptions every call generate branch

» Compiling with -fno-exceptions changes every throw to call of
std::abort()

» Other solution is to mark almost every function with noexcept

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LET'S TALK ABOUT CONST

struct A { struct A {
void foo() const; void foo() const;
int b = 03 int b = 0;

}i }i

void bar(int); void bar(int);

int main() { int main() {

A ajy A ajy
bar(a.b); bar(0);
a.foo(); a.foo();
bar(a.b): bar(0):

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LET'S TALK ABOUT CONST

» lllegal to do the optimization because foo can use const_caston b
» const cast on a const reference to non-const variable is OK

» const_cast on a memory declared const is UB

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CONST PROPAGATION

» Every time we call external const method, or function having const
reference parameters, the compiler have to assume the worst -
const_cast

» This really sucks, because const propagation is awesome

» If only const would have non-mutable guarantee...

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CONST PROPAGATION WITH STRICT CONST

void foo(const int &a) {
bar(a);
bar(a);

}

void bar(const int &b);

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CONST PROPAGATION WITH STRICT CONST

void foo(const int &a) { int global;
const int temp = a;
bar (temp); void caller() {
bar (temp) ; foo(global);
h h
void bar(const int &b); void bar(const int &b) {
global++;

}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

WHAT ABOUT MUTABLE?

class A { class A {
- mutable X;

i }i

void caller() { void caller() {
A a:; A a;
foo(a); foo(a);

} }

void foo(const A &a); void foo(const A &a);

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

DOES THE REAL CONST EXIST?

» Kinda. Compilers mark functions as ,const” (e.g. readonly in llvm) if
they don’t modity memory

» Maybe problem is somewhere else?

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUT IS THE CONST THE REAL PROBLEM?

TRANSLATION UNIT

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

THE SOLUTION

» Use Link Time Optimizations!

Do | redlly looke like
aguywitha

32GB of RAM?

» Then use ThinLTO/LIPO

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

VIRTUAL FUNCTIONS

» Is there a difference between C++ virtual functions and hand written
'virtual' functions in C?

» C++ standard doesn’t explicitly mention UB with virtual functions

» But it say much about object lifetime

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

VIRTUAL FUNCTIONS

int test(Base *a) {
int sum = 0;
sum += a->foo();
sum += a->foo(); // Is it the same foo()?
return sum;

}

int Base::foo() {
new (this) Derived;
return 1;

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CALLING MAIN

int main(int argc, const char* argv[]) {
1f (argc == 0)
return 0;

printf("%s ", argv[0]);
return main(argc - 1, argv + 1);

int main(

) 1
auto p =

std: :make unique<int>(42);
std::unique ptr<int> p2 = std::move(p);

* — o
P = ’
std::cout << *p << std::endl;

int main() {
auto p = std::make unique<int>(42);

std::unique ptr<int> p2 = std::move(p);

int main() {
auto p = std::make unique<int>(42);

std: :move(p);

int main() {
std: :make unique<int>(42);

int main() {

void fun(int *p,

*p = 42;

if (!p) A
*z = 54

}

int *z) {

void fun(int *p, int *z) {

*p = 42;

/* 1if (lp) {
*z = 5b4;

}o*/

void fun(int *p, int *z) {

if (!p) A
*z = 54y

}

*PD = 42;

void fun(int *p, int *z) {
/* 1f (!p) {
*z = 54;
}*/
*p = 42;

QUESTIONS!

