
UNDEFINED BEHAVIOR IS
AWESOME
Piotr Padlewski

piotr.padlewski@gmail.com, @PiotrPadlewski

mailto:piotr.padlewski@gmail.com

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

ABOUT MYSELF

▸Currently working in IIIT developing C++ tooling like clang-tidy and
studying on University of Warsaw.

▸Worked on optimizations in clang and LLVM - devirtualization and
ThinLTO at Google

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

IMPLEMENTATION DEFINED BEHAVIOUR (IB)

▸The behavior of the program varies between implementations, and the
conforming implementation must document the effects of each
behavior.

▸Examples:

▸Type of std::size_t

▸Number of bits in long

▸Number of bits in a byte

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

UNSPECIFIED BEHAVIOR

▸The behavior of the program varies between implementations and the
conforming implementation is not required to document the effects of
each behavior.[0]

▸Examples:

▸Order of evaluation: foo(bar(), baz());

▸ Identical string literals address: “foo” == “foo”

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

UNDEFINED BEHAVIOR (UB)

▸There are no restrictions on the behavior of the program.

▸We can treat it as a promise to the compiler that something won’t
happen.

WHAT CAN HAPPEN
AFTER HITTING UB?

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

UNDEFINED BEHAVIOR (UB)
▸ In theory your program can do anything

▸ in practice the odds of formatting your hard drive are

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BORING UBS

▸Naming variable starting with underscore

▸Defining functions in namespace std

▸Specializing non-user defined types in namespace std (can’t specialize
std::hash<std::pair<int, int>>)

▸Calling delete/free after new[]

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

MORE INTERESTING UBS

▸Dereferencing nullptr

▸Using uninitialized values

▸ Integers overflows

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

SIMPLE OVERFLOW

int foo(int x) {
 return x+1 > x;
}

int foo(int) {
 return true;
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LOOPS
for (int i = 0; i < n; i+=2) {
 A[i] = B[i] + C[i];
 A[i+1] = B[i+1] + C[i+1];
}
▸Loop will terminate

▸assert(n >= i);

▸safe to wider i to uint64_t

= VECTORIZATION AND UNROLLING

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

TASTY UBS

▸buffer overflow

▸using pointer to object of ended lifetime

▸violating strict-aliasing

▸const_casting const

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists_in_table(int v)
{
 for (int i = 0; i <= 4; i++) {
 if (table[i] == v)
 return true;
 }
 return false;
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists_in_table(int v)
{
 for (int i = 0; i <= 4; i++) {
 if (table[i] == v)
 return true;
 }
 return false;
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists_in_table(int v)
{
 for (int i = 0; i <= 4; i++) {
 if (table[i] == v)
 return true;
 }
 return false;
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUFFER OVERFLOW

int table[4];
bool exists_in_table(int v)
{
 return true;
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LIFETIME AND POINTERS
#include <stdio.h>
#include <stdlib.h>

int main() {
 int *p = (int*)malloc(sizeof(int));
 int *q = (int*)realloc(p, sizeof(int));
 if (p == q) {
 *p = 1;
 *q = 2;
 printf("%d %d\n", *p, *q);
 }
}

Compiled with clang produce: 1 2

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LIFETIME AND POINTERS

vector<int> v;
v.reserve(2);
v.push_back(4);
v.push_back(2);
auto& ref = v[0];
v.push_back(42);

if (&v[0] == &ref)
 ref = 42;

IS THIS VALID?
IS THIS UB/IB?
valid, because std::allocator 
only calls new/delete 

WHEN SOMETHING IS GOOD
CANDIDATE TO BE UB?
When occurred situation is considered a bug and defining it’s behavior
would be a performance loss.

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

STACK OVERFLOW

▸Why I can’t get a nice error message saying I got stack overflow?

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

OUT OF MEMORY

▸Ok, at least we get std::bad_alloc or nullptr when heap allocation fails.

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

WHY PEOPLE HATE EXCEPTIONS

▸With enabled exceptions every call generate branch

▸Compiling with -fno-exceptions changes every throw to call of
std::abort()

▸Other solution is to mark almost every function with noexcept

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LET’S TALK ABOUT CONST
struct A {
 void foo() const;
 int b = 0;
};

void bar(int);

int main() {
 A a;
 bar(a.b);
 a.foo();
 bar(a.b):
}

struct A {
 void foo() const;
 int b = 0;
};

void bar(int);

int main() {
 A a;
 bar(0);
 a.foo();
 bar(0):
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

LET’S TALK ABOUT CONST

▸ Illegal to do the optimization because foo can use const_cast on b

▸const_cast on a const reference to non-const variable is OK

▸const_cast on a memory declared const is UB

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CONST PROPAGATION

▸Every time we call external const method, or function having const
reference parameters, the compiler have to assume the worst -
const_cast

▸This really sucks, because const propagation is awesome

▸ If only const would have non-mutable guarantee…

IMAGINE THERE IS NO CONST_CAST

IMAGINE IF CONST_CASTING WOULD

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CONST PROPAGATION WITH STRICT CONST
void foo(const int &a) {
 bar(a);
 bar(a);
}

void bar(const int &b);

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CONST PROPAGATION WITH STRICT CONST
void foo(const int &a) {
 const int temp = a;
 bar(temp);
 bar(temp);
}

void bar(const int &b);

int global;

void caller() {
 foo(global);
}

void bar(const int &b) {
 global++;
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

WHAT ABOUT MUTABLE?
class A {
 ;;;
};

void caller() {
 A a;
 foo(a);
}

void foo(const A &a);

class A {
 mutable X;
};

void caller() {
 A a;
 foo(a);
}

void foo(const A &a);

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

DOES THE REAL CONST EXIST?

▸Kinda. Compilers mark functions as „const” (e.g. readonly in llvm) if
they don’t modify memory

▸Maybe problem is somewhere else?

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

BUT IS THE CONST THE REAL PROBLEM?

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

THE SOLUTION

▸Use Link Time Optimizations!

32GB of RAM?

▸Then use ThinLTO/LIPO

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

VIRTUAL FUNCTIONS

▸ Is there a difference between C++ virtual functions and hand written
'virtual' functions in C?

▸C++ standard doesn’t explicitly mention UB with virtual functions

▸But it say much about object lifetime

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

VIRTUAL FUNCTIONS

int test(Base *a) {
 int sum = 0;
 sum += a->foo();
 sum += a->foo(); // Is it the same foo()?
 return sum;
}

int Base::foo() {
 new (this) Derived;
 return 1;
}

UNDEFINED BEHAVIOR IS AWESOME - CODE::DIVE 2016

CALLING MAIN

int main(int argc, const char* argv[]) {
 if (argc == 0)
 return 0;
 printf("%s ", argv[0]);
 return main(argc - 1, argv + 1);
}

int main() {
 auto p = std::make_unique<int>(42);

 std::unique_ptr<int> p2 = std::move(p);

 *p = 42;
 std::cout << *p << std::endl;
}

int main() {
 auto p = std::make_unique<int>(42);

 std::unique_ptr<int> p2 = std::move(p);
}

int main() {
 auto p = std::make_unique<int>(42);

 std::move(p);
}

int main() {
 std::make_unique<int>(42);

}

int main() {

}

void fun(int *p, int *z) {
 *p = 42;
 if (!p) {
 *z = 54;
 }
}

void fun(int *p, int *z) {
 *p = 42;
 /* if (!p) {
 *z = 54;
 } */
}

void fun(int *p, int *z) {
 if (!p) {
 *z = 54;
 }
 *p = 42;
}

void fun(int *p, int *z) {
 /* if (!p) {
 *z = 54;
 } */
 *p = 42;
}

QUESTIONS!

