
C++
don’t do it at home

Robert Piszczatowski

Tls technologie (tls.pl)

DCC Labs (dcclabs.com)

Warsaw C++ Users Group, 2015

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();
4 (b ? a1 : A()).f();// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2 a = (b ? c : (d = e)) // same as above in c++
3 a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();

4 (b ? a1 : A()).f();// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2 a = (b ? c : (d = e)) // same as above in c++
3 a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();
4 (b ? a1 : A()).f();

// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2 a = (b ? c : (d = e)) // same as above in c++
3 a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();
4 (b ? a1 : A()).f();// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2 a = (b ? c : (d = e)) // same as above in c++
3 a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();
4 (b ? a1 : A()).f();// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2 a = (b ? c : (d = e)) // same as above in c++
3 a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();
4 (b ? a1 : A()).f();// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2

a = (b ? c : (d = e)) // same as above in c++
3 a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();
4 (b ? a1 : A()).f();// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2 a = (b ? c : (d = e)) // same as above in c++
3

a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

Ternary operator return type.

1 A a1, a2;
2 bool b = ...;
3 (b ? a1 : a2).f();
4 (b ? a1 : A()).f();// creates a copy of a1

Ternary operator in PHP is left associative

1 TRUE ? "a" : FALSE ? "b" : "c"; # this evaluates to "b"

Ternary operator precedence

1 a = b ? c : d = e
2 a = (b ? c : (d = e)) // same as above in c++
3 a = (b ? c : d) = e // same as above in c

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

C++14 standard (n3979), §5.16:
conditional-expression:

logical-or-expression
logical-or-expression ? expression : assignment-expression

C11 standard (n1570), §6.5.15:
conditional-expression:

logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Robert Piszczatowski C++

Ternary operator
Not so obvious. . .

C++14 standard (n3979), §5.16:
conditional-expression:

logical-or-expression
logical-or-expression ? expression : assignment-expression

C11 standard (n1570), §6.5.15:
conditional-expression:

logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Robert Piszczatowski C++

Statement expression (gcc only)

One day I saw piece of code like this below

1 bool b = ...;
2 b ? (LOG_DEBUG(...)) : (LOG_DEBUG(...)); // ???

This feature is called statement expressions. Standard example:

1 #define MY_MAX(a, b) ({int _a = (a), _b = (b); _a > _b
? _a : _b; })

Example from Qt library

1 #define Q_FOREACH(variable, container) \
2 for (QForeachContainer<__typeof__(container)> _container_(container); \
3 !_container_.brk && _container_.i != _container_.e; \
4 __extension__ ({ ++_container_.brk; ++_container_.i; })) \
5 for (variable = ∗_container_.i ;; __extension__ ({−−_container_.brk; break;}))

Robert Piszczatowski C++

Statement expression (gcc only)

One day I saw piece of code like this below

1 bool b = ...;
2 b ? (LOG_DEBUG(...)) : (LOG_DEBUG(...)); // ???

This feature is called statement expressions. Standard example:

1 #define MY_MAX(a, b) ({int _a = (a), _b = (b); _a > _b
? _a : _b; })

Example from Qt library

1 #define Q_FOREACH(variable, container) \
2 for (QForeachContainer<__typeof__(container)> _container_(container); \
3 !_container_.brk && _container_.i != _container_.e; \
4 __extension__ ({ ++_container_.brk; ++_container_.i; })) \
5 for (variable = ∗_container_.i ;; __extension__ ({−−_container_.brk; break;}))

Robert Piszczatowski C++

Statement expression (gcc only)

One day I saw piece of code like this below

1 bool b = ...;
2 b ? (LOG_DEBUG(...)) : (LOG_DEBUG(...)); // ???

This feature is called statement expressions. Standard example:

1 #define MY_MAX(a, b) ({int _a = (a), _b = (b); _a > _b
? _a : _b; })

Example from Qt library

1 #define Q_FOREACH(variable, container) \
2 for (QForeachContainer<__typeof__(container)> _container_(container); \
3 !_container_.brk && _container_.i != _container_.e; \
4 __extension__ ({ ++_container_.brk; ++_container_.i; })) \
5 for (variable = ∗_container_.i ;; __extension__ ({−−_container_.brk; break;}))

Robert Piszczatowski C++

Void
unusable type?

It is possible to write void() as an expression. How it could be
useful?

1 #define CHECK_INIT(retVal) if (!isInitialized()) return
retVal;

2

3 void myFun() {
4 CHECK_INIT(void());
5 // do stuff...
6 }

Void type can be used in argument list. In c++ it has same meaning as
empty argument list.

1 int f(); // this can get any number of arguments in c
2 int f(void); // this can get no arguments in c

Robert Piszczatowski C++

Void
unusable type?

It is possible to write void() as an expression. How it could be
useful?

1 #define CHECK_INIT(retVal) if (!isInitialized()) return
retVal;

2

3 void myFun() {
4 CHECK_INIT(void());
5 // do stuff...
6 }

Void type can be used in argument list. In c++ it has same meaning as
empty argument list.

1 int f(); // this can get any number of arguments in c
2 int f(void); // this can get no arguments in c

Robert Piszczatowski C++

Void
unusable type?

It is possible to write void() as an expression. How it could be
useful?

1 #define CHECK_INIT(retVal) if (!isInitialized()) return
retVal;

2

3 void myFun() {
4 CHECK_INIT(void());
5 // do stuff...
6 }

Void type can be used in argument list. In c++ it has same meaning as
empty argument list.

1 int f(); // this can get any number of arguments in c
2 int f(void); // this can get no arguments in c

Robert Piszczatowski C++

Void
unusable type?

According to §3.9.1/9 in c++ standard: „Any expression can be
explicitly converted to type cv void.” It can be useful to explicitly ignore
result of an expression.

But for classes user can define his own
conversion. Consider:

1 struct A {
2 operator void() { /* some bad stuff here */ }
3 };

According to §12.3.2/1: „A conversion function is never used to convert
an object to the same object type, to a base class of that type, or to
void.” So above cast operator can be used only in function call notation:

1 A a;
2 (void) a; // this calls builtin conversion to void
3 a.operator void(); // this calls user defined

conversion operator

Robert Piszczatowski C++

Void
unusable type?

According to §3.9.1/9 in c++ standard: „Any expression can be
explicitly converted to type cv void.” It can be useful to explicitly ignore
result of an expression. But for classes user can define his own
conversion. Consider:

1 struct A {
2 operator void() { /* some bad stuff here */ }
3 };

According to §12.3.2/1: „A conversion function is never used to convert
an object to the same object type, to a base class of that type, or to
void.” So above cast operator can be used only in function call notation:

1 A a;
2 (void) a; // this calls builtin conversion to void
3 a.operator void(); // this calls user defined

conversion operator

Robert Piszczatowski C++

Void
unusable type?

According to §3.9.1/9 in c++ standard: „Any expression can be
explicitly converted to type cv void.” It can be useful to explicitly ignore
result of an expression. But for classes user can define his own
conversion. Consider:

1 struct A {
2 operator void() { /* some bad stuff here */ }
3 };

According to §12.3.2/1: „A conversion function is never used to convert
an object to the same object type, to a base class of that type, or to
void.” So above cast operator can be used only in function call notation:

1 A a;
2 (void) a; // this calls builtin conversion to void
3 a.operator void(); // this calls user defined

conversion operator

Robert Piszczatowski C++

Function that cannot be called

There is a way to define a function that cannot be called, because
there is no such syntax in language to call it.

1 struct A {
2 template <typename T> A() {}
3 template <typename T> operator typename T::type() {}
4 };

The idea here is that constructors and cast operators does not have
names, so we need to create template for which template arguments
will not be deductible. See §14.5.2/5: „Note: Because the explicit
template argument list follows the function template name, and
because conversion member function templates and constructor
member function templates are called without using a function name,
there is no way to provide an explicit template argument list for these
function templates.”

Robert Piszczatowski C++

Function that cannot be called

There is a way to define a function that cannot be called, because
there is no such syntax in language to call it.

1 struct A {
2 template <typename T> A() {}
3 template <typename T> operator typename T::type() {}
4 };

The idea here is that constructors and cast operators does not have
names, so we need to create template for which template arguments
will not be deductible. See §14.5.2/5: „Note: Because the explicit
template argument list follows the function template name, and
because conversion member function templates and constructor
member function templates are called without using a function name,
there is no way to provide an explicit template argument list for these
function templates.”

Robert Piszczatowski C++

Function that cannot be called

There is a way to define a function that cannot be called, because
there is no such syntax in language to call it.

1 struct A {
2 template <typename T> A() {}
3 template <typename T> operator typename T::type() {}
4 };

The idea here is that constructors and cast operators does not have
names, so we need to create template for which template arguments
will not be deductible. See §14.5.2/5: „Note: Because the explicit
template argument list follows the function template name, and
because conversion member function templates and constructor
member function templates are called without using a function name,
there is no way to provide an explicit template argument list for these
function templates.”

Robert Piszczatowski C++

Complicated code

1 int main(int t , int u, char ∗a) {
2 return (!0<t)?((t<3?main(−79,−13,a+main(−87,1−u,main(
3 −86,0,a+1)+a)):1),(t<u?main(t+1,u,a):3),(main(−94,−27+t,a)&&(t==2?
4 (u<13?main(2,u+1,"%s %d %d\n"):9) :16))):(t<0?(t<−72?main(u, t,
5 "@n’+,#’/∗{}w+/w#cdnr/+,{}r/∗de}+,/∗{∗+,/w{%+,/w#q#n+,/#{l,+\
6 ,/ n{n+,/+#n+,/#;#q#n+,/+k#;∗+,/’r :’ d∗’3,}{ w+K w’K:’+}e#’;d\
7 q#’ l q#’+d’K#!/+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’) {) {nl]\
8 ’/+#n ’; d}rw’ i ;#) {nl]!/ n{n#’; r{#w’r nc{nl]’/#{ l ,+’K {rw’ iK {;[\
9 {nl]’/ w#q#n’wk nw’ iwk{KK{nl]!/w{%’l##w#’ i; :{ nl]’/∗{ q#’ld ; r ’}{\

10 nlwb!/∗de}’c ;;{ nl ’−{}rw]’/+,}##’∗}# nc ,’,# nw]’/+\
11 kd’+e}+;#’rdq#w! nr ’/ ’) }+}{ rl #’{n’ ’) # }’+}##(!!/ ") :(t<−50?(u==∗a?

putchar(a[31]):
12 main(−65,u,a+1)):main((∗a==’/’)+t,u,a+1))):(0<t? main(2,2,"%s")
13 :∗a==’/ ’ || main(0,main(−61,∗a,"!ek;dc

i@bK’(q)−[w]∗%n+r3#l,{}:\nuwloca−O;m .vpbks,fxntdCeghiry"),a+1)));
14 }

Robert Piszczatowski C++

Complicated code (result)

On the first day of Christmas my true love gave to me a partridge in a pear tree.
On the second day of Christmas my true love gave to me two turtle doves and a partridge in a pear tree.
On the third day of Christmas my true love gave to me three french hens, two turtle doves and a partridge in a pear tree.
On the fourth day of Christmas my true love gave to me four calling birds, three french hens, two turtle doves and a partridge in a
pear tree.
On the fifth day of Christmas my true love gave to me five gold rings; four calling birds, three french hens, two turtle doves and a
partridge in a pear tree.
On the sixth day of Christmas my true love gave to me six geese a-laying, five gold rings; four calling birds, three french hens, two
turtle doves and a partridge in a pear tree.
On the seventh day of Christmas my true love gave to me seven swans a-swimming, six geese a-laying, five gold rings; four
calling birds, three french hens, two turtle doves and a partridge in a pear tree.
On the eighth day of Christmas my true love gave to me eight maids a-milking, seven swans a-swimming, six geese a-laying, five
gold rings; four calling birds, three french hens, two turtle doves and a partridge in a pear tree.
On the ninth day of Christmas my true love gave to me nine ladies dancing, eight maids a-milking, seven swans a-swimming, six
geese a-laying, five gold rings; four calling birds, three french hens, two turtle doves and a partridge in a pear tree.
On the tenth day of Christmas my true love gave to me ten lords a-leaping, nine ladies dancing, eight maids a-milking, seven
swans a-swimming, six geese a-laying, five gold rings; four calling birds, three french hens, two turtle doves and a partridge in a
pear tree.
On the eleventh day of Christmas my true love gave to me eleven pipers piping, ten lords a-leaping, nine ladies dancing, eight
maids a-milking, seven swans a-swimming, six geese a-laying, five gold rings; four calling birds, three french hens, two turtle
doves and a partridge in a pear tree.

On the twelfth day of Christmas my true love gave to me twelve drummers drumming, eleven pipers piping, ten lords a-leaping,

nine ladies dancing, eight maids a-milking, seven swans a-swimming, six geese a-laying, five gold rings; four calling birds, three

french hens, two turtle doves and a partridge in a pear tree.

Robert Piszczatowski C++

Thank you

Thank You

Robert Piszczatowski C++

